Categories
Misc

need a little help

hey everyone so i have been experimenting with object detection using python,opencv and tensorflow but i keep getting this error P.S both the code an “myData” are in the same folder

the code:

import numpy as np import matplotlib.pyplot as plt from keras.models import Sequential from keras.layers import Dense from tensorflow.keras.optimizers import Adam from keras.utils.np_utils import to_categorical from keras.layers import Dropout, Flatten from keras.layers.convolutional import Conv2D, MaxPooling2D import cv2 from sklearn.model_selection import train_test_split import pickle import os import pandas as pd import random from keras.preprocessing.image import ImageDataGenerator

########### Parameters

path = “myData” # folder with all the class folders labelFile = ‘labels.csv’ # file with all names of classes batch_size_val = 50 # how many to process together steps_per_epoch_val = 2000 epochs_val = 10 imageDimesions = (32, 32, 3) testRatio = 0.2 # if 1000 images split will 200 for testing validationRatio = 0.2 # if 1000 images 20% of remaining 800 will be 160 for validation

######################### Importing of the Images

count = 0 images = [] classNo = [] myList = os.listdir(path) print(“Total Classes Detected:”, len(myList)) noOfClasses = len(myList) print(“Importing Classes…..”) for x in range(0, len(myList)): myPicList = os.listdir(path + “/” + str(count)) for y in myPicList: curImg = cv2.imread(path + “/” + str(count) + “/” + y) images.append(curImg) classNo.append(count) print(count, end=” “) count += 1 print(” “) images = np.array(images) classNo = np.array(classNo)

######################### Split Data

X_train, X_test, y_train, y_test = train_test_split(images, classNo, test_size=testRatio) X_train, X_validation, y_train, y_validation = train_test_split(X_train, y_train, test_size=validationRatio)

X_train = ARRAY OF IMAGES TO TRAIN y_train = CORRESPONDING CLASS ID ######################### TO CHECK IF NUMBER OF IMAGES MATCHES TO NUMBER OF LABELS FOR EACH DATA SET

print(“Data Shapes”) print(“Train”, end=””); print(X_train.shape, y_train.shape) print(“Validation”, end=””); print(X_validation.shape, y_validation.shape) print(“Test”, end=””); print(X_test.shape, y_test.shape) assert (X_train.shape[0] == y_train.shape[ 0]), “The number of images in not equal to the number of lables in training set” assert (X_validation.shape[0] == y_validation.shape[ 0]), “The number of images in not equal to the number of lables in validation set” assert (X_test.shape[0] == y_test.shape[0]), “The number of images in not equal to the number of lables in test set” assert (X_train.shape[1:] == (imageDimesions)), ” The dimesions of the Training images are wrong ” assert (X_validation.shape[1:] == (imageDimesions)), ” The dimesionas of the Validation images are wrong ” assert (X_test.shape[1:] == (imageDimesions)), ” The dimesionas of the Test images are wrong”

######################### READ CSV FILE

data = pd.read_csv(labelFile) print(“data shape “, data.shape, type(data))

######################### DISPLAY SOME SAMPLES IMAGES OF ALL THE CLASSES

num_of_samples = [] cols = 5 num_classes = noOfClasses fig, axs = plt.subplots(nrows=num_classes, ncols=cols, figsize=(5, 300)) fig.tight_layout() for i in range(cols): for j, row in data.iterrows(): x_selected = X_train[y_train == j] axs[j][i].imshow(x_selected[random.randint(0, len(x_selected) – 1), :, :], cmap=plt.get_cmap(“gray”)) axs[j][i].axis(“off”) if i == 2: axs[j][i].set_title(str(j) + “-” + row[“Name”]) num_of_samples.append(len(x_selected))

######################### DISPLAY A BAR CHART SHOWING NO OF SAMPLES FOR EACH CATEGORY

print(num_of_samples) plt.figure(figsize=(12, 4)) plt.bar(range(0, num_classes), num_of_samples) plt.title(“Distribution of the training dataset”) plt.xlabel(“Class number”) plt.ylabel(“Number of images”) plt.show()

######################### PREPROCESSING THE IMAGES

def grayscale(img): img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) return img

def equalize(img): img = cv2.equalizeHist(img) return img

def preprocessing(img): img = grayscale(img) # CONVERT TO GRAYSCALE img = equalize(img) # STANDARDIZE THE LIGHTING IN AN IMAGE img = img / 255 # TO NORMALIZE VALUES BETWEEN 0 AND 1 INSTEAD OF 0 TO 255 return img

X_train = np.array(list(map(preprocessing, X_train))) # TO IRETATE AND PREPROCESS ALL IMAGES X_validation = np.array(list(map(preprocessing, X_validation))) X_test = np.array(list(map(preprocessing, X_test))) cv2.imshow(“GrayScale Images”, X_train[random.randint(0, len(X_train) – 1)]) # TO CHECK IF THE TRAINING IS DONE PROPERLY

######################### ADD A DEPTH OF 1

X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], X_train.shape[2], 1) X_validation = X_validation.reshape(X_validation.shape[0], X_validation.shape[1], X_validation.shape[2], 1) X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], X_test.shape[2], 1)

######################### AUGMENTATAION OF IMAGES: TO MAKEIT MORE GENERIC

dataGen = ImageDataGenerator(width_shift_range=0.1, # 0.1 = 10% IF MORE THAN 1 E.G 10 THEN IT REFFERS TO NO. OF PIXELS EG 10 PIXELS height_shift_range=0.1, zoom_range=0.2, # 0.2 MEANS CAN GO FROM 0.8 TO 1.2 shear_range=0.1, # MAGNITUDE OF SHEAR ANGLE rotation_range=10) # DEGREES dataGen.fit(X_train) batches = dataGen.flow(X_train, y_train, batch_size=20) # REQUESTING DATA GENRATOR TO GENERATE IMAGES BATCH SIZE = NO. OF IMAGES CREAED EACH TIME ITS CALLED X_batch, y_batch = next(batches)

TO SHOW AGMENTED IMAGE SAMPLES

fig, axs = plt.subplots(1, 15, figsize=(20, 5)) fig.tight_layout()

the error: myPicList = os.listdir(path + “/” + str(count)) FileNotFoundError: [WinError 3] The system cannot find the path specified: ‘myData/0’

submitted by /u/Sufficient-Try8159
[visit reddit] [comments]

Leave a Reply

Your email address will not be published. Required fields are marked *