Categories
Offsites

The Data Cards Playbook: A Toolkit for Transparency in Dataset Documentation

As machine learning (ML) research moves toward large-scale models capable of numerous downstream tasks, a shared understanding of a dataset’s origin, development, intent, and evolution becomes increasingly important for the responsible and informed development of ML models. However, knowledge about datasets, including use and implementations, is often distributed across teams, individuals, and even time. Earlier this year at the ACM Conference on Fairness, Accountability, and Transparency (ACM FAccT), we published Data Cards, a dataset documentation framework aimed at increasing transparency across dataset lifecycles. Data Cards are transparency artifacts that provide structured summaries of ML datasets with explanations of processes and rationale that shape the data and describe how the data may be used to train or evaluate models. At minimum, Data Cards include the following: (1) upstream sources, (2) data collection and annotation methods, (3) training and evaluation methods, (4) intended use, and (5) decisions affecting model performance.

In practice, two critical factors determine the success of a transparency artifact, the ability to identify the information decision-makers use and the establishment of processes and guidance needed to acquire that information. We started to explore this idea in our paper with three “scaffolding” frameworks designed to adapt Data Cards to a variety of datasets and organizational contexts. These frameworks helped us create boundary infrastructures, which are the processes and engagement models that complement technical and functional infrastructure necessary to communicate information between communities of practice. Boundary infrastructures enable dataset stakeholders to find common ground used to provide diverse input into decisions for the creation, documentation, and use of datasets.

Today, we introduce the Data Cards Playbook, a self-guided toolkit for a variety of teams to navigate transparency challenges with their ML datasets. The Playbook applies a human-centered design approach to documentation — from planning a transparency strategy and defining the audience to writing reader-centric summaries of complex datasets — to ensure that the usability and utility of the documented datasets are well understood. We’ve created participatory activities to navigate typical obstacles in setting up a dataset transparency effort, frameworks that can scale data transparency to new data types, and guidance that researchers, product teams and companies can use to produce Data Cards that reflect their organizational principles.

The Data Cards Playbook incorporates the latest in fairness, accountability, and transparency research.

The Data Cards Playbook

We created the Playbook using a multi-pronged approach that included surveys, artifact analysis, interviews, and workshops. We studied what Googlers wanted to know about datasets and models, and how they used that information in their day-to-day work. Over the past two years, we deployed templates for transparency artifacts used by fifteen teams at Google, and when bottlenecks arose, we partnered with these teams to determine appropriate workarounds. We then created over twenty Data Cards that describe image, language, tabular, video, audio, and relational datasets in production settings, some of which are now available on GitHub. This multi-faceted approach provided insights into the documentation workflows, collaborative information-gathering practices, information requests from downstream stakeholders, and review and assessment practices for each Google team.

Moreover, we spoke with design, policy, and technology experts across the industry and academia to get their unique feedback on the Data Cards we created. We also incorporated our learnings from a series of workshops at ACM FAccT in 2021. Within Google, we evaluated the effectiveness and scalability of our solutions with ML researchers, data scientists, engineers, AI ethics reviewers, product managers, and leadership. In the Data Cards Playbook, we’ve translated successful approaches into repeatable practices that can easily be adapted to unique team needs.

Activities, Foundations, and Transparency Patterns

The Data Cards Playbook is modeled after sprints and co-design practices, so cross-functional teams and their stakeholders can work together to define transparency with an eye for real-world problems they experience when creating dataset documentation and governance solutions. The thirty-three available Activities invite broad, critical perspectives from a wide variety of stakeholders, so Data Cards can be useful for decisions across the dataset lifecycle. We partnered with researchers from the Responsible AI team at Google to create activities that can reflect considerations of fairness and accountability. For example, we’ve adapted Evaluation Gaps in ML practices into a worksheet for more complete dataset documentation.

Download readily-available activity templates to use the Data Cards Playbook in your organization.

We’ve formed Transparency Patterns with evidence-based guidance to help anticipate challenges faced when producing transparent documentation, offer best practices that improve transparency, and make Data Cards useful for readers from different backgrounds. The challenges and their workarounds are based on data and insights from Googlers, industry experts, and academic research.

Patterns help unblock teams with recommended practices, caution against common pitfalls, and suggested alternatives to roadblocks.

The Playbook also includes Foundations, which are scalable concepts and frameworks that explore fundamental aspects of transparency as new contexts of data modalities and ML arise. Each Foundation supports different product development stages and includes key takeaways, actions for teams, and handy resources.

Playbook Modules

The Playbook is organized into four modules: (1) Ask, (2) Inspect, (3) Answer, and (3) Audit. Each module contains a growing compendium of materials teams can use within their workflows to tackle transparency challenges that frequently co-occur. Since Data Cards were created with scalability and extensibility in mind, modules leverage divergence-converge thinking that teams may already use, so documentation isn’t an afterthought. The Ask and Inspect modules help create and evaluate Data Card templates for organizational needs and principles. The Answer and Audit modules help data teams complete the templates and evaluate the resulting Data Cards.

In Ask, teams define transparency and optimize their dataset documentation for cross-functional decision-making. Participatory activities create opportunities for Data Card readers to have a say in what constitutes transparency in the dataset’s documentation. These address specific challenges and are rated for different intensities and durations so teams can mix-and-match activities around their needs.

The Inspect module contains activities to identify gaps and opportunities in dataset transparency and processes from user-centric and dataset-centric perspectives. It supports teams in refining, validating, and operationalizing Data Card templates across an organization so readers can arrive at reasonable conclusions about the datasets described.

The Answer module contains transparency patterns and dataset-exploration activities to answer challenging and ambiguous questions. Topics covered include preparing for transparency, writing reader-centric summaries in documentation, unpacking the usability and utility of datasets, and maintaining a Data Card over time.

The Audit module helps data teams and organizations set up processes to evaluate completed Data Cards before they are published. It also contains guidance to measure and track how a transparency effort for multiple datasets scales within organizations.

In Practice

A data operations team at Google used an early version of the Lenses and Scopes Activities from the Ask modules to create a customized Data Card template. Interestingly, we saw them use this template across their workflow till datasets were handed off. They used Data Cards to take dataset requests from research teams, tracked the various processes to create the datasets, collected metadata from vendors responsible for annotations, and managed approvals. Their experiences of iterating with experts and managing updates are reflected in our Transparency Patterns.

Another data governance group used a more advanced version of the activities to interview stakeholders for their ML health-related initiative. Using these descriptions, they identified stakeholders to co-create their Data Card schema. Voting on Lenses was used to rule out typical documentation questions, and identify atypical documentation needs specific to their data type, and important for decisions frequently made by ML leadership and tactical roles within their team. These questions were then used to customize existing metadata schemas in their data repositories.

Conclusion

We present the Data Cards Playbook, a continuous and contextual approach to dataset transparency that deliberately considers all relevant materials and contexts. With this, we hope to establish and promote practice-oriented foundations for transparency to pave the path for researchers to develop ML systems and datasets that are responsible and benefit society.

In addition to the four Playbook modules described, we’re also open-sourcing a card builder, which generates interactive Data Cards from a Markdown file. You can see the builder in action in the GEM Benchmark project’s Data Cards. The Data Cards created were a result of activities from this Playbook, in which the GEM team identified improvements across all dimensions, and created an interactive collection tool designed around scopes.

We acknowledge that this is not a comprehensive solution for fairness, accountability, or transparency in itself. We’ll continue to improve the Playbook using lessons learned. We hope the Data Cards Playbook can become a robust platform for collaboratively advancing transparency research, and invite you to make this your own.

Acknowledgements

This work was done in collaboration with Reena Jana, Vivian Tsai, and Oddur Kjartansson. We want to thank Donald Gonzalez, Dan Nanas, Parker Barnes, Laura Rosenstein, Diana Akrong, Monica Caraway, Ding Wang, Danielle Smalls, Aybuke Turker, Emily Brouillet, Andrew Fuchs, Sebastian Gehrmann, Cassie Kozyrkov, Alex Siegman, and Anthony Keene for their immense contributions; and Meg Mitchell and Timnit Gebru for championing this work.

We also want to thank Adam Boulanger, Lauren Wilcox, Roxanne Pinto, Parker Barnes, and Ayça Çakmakli for their feedback; Tulsee Doshi, Dan Liebling, Meredith Morris, Lucas Dixon, Fernanda Viegas, Jen Gennai, and Marian Croak for their support. This work would not have been possible without our workshop and study participants, and numerous partners, whose insights and experiences have shaped this Playbook.

Categories
Misc

MoMA Installation Marks Breakthrough for AI Art

AI-generated art has arrived. With a presentation making its debut this week at The Museum of Modern Art in New York City — perhaps the world’s premier institution devoted to modern and contemporary art — the AI technologies that have upended trillion-dollar industries worldwide over the past decade will get a formal introduction. Created by Read article >

The post MoMA Installation Marks Breakthrough for AI Art appeared first on NVIDIA Blog.

Categories
Misc

Upcoming Webinar: Deep Learning Demystified

Join NVIDIA on December 1 at 3 pm GMT to learn the fundamentals of accelerated data analytics, high-level use cases, and problem-solving methods that can help…

Join NVIDIA on December 1 at 3 pm GMT to learn the fundamentals of accelerated data analytics, high-level use cases, and problem-solving methods that can help deliver breakthrough research.

Categories
Misc

Lockheed Martin, NVIDIA to Build Digital Twin of Current Global Weather Conditions for the National Oceanic and Atmospheric Administration

Lockheed Martin (NYSE: LMT) and NVIDIA today announced a collaboration to build an Artificial Intelligence (AI)-driven Earth Observations Digital Twin that will provide the National Oceanic and Atmospheric Administration (NOAA) with an efficient and centralized approach to monitor current global environmental conditions, including extreme weather events.

Categories
Misc

Lockheed Martin, NVIDIA to Help US Speed Climate Data to Researchers

The U.S. National Oceanic and Atmospheric Administration has selected Lockheed Martin and NVIDIA to build a prototype system to accelerate outputs of Earth Environment Monitoring and their corresponding visualizations. Using AI techniques, such a system has the potential to reduce by an order of magnitude the amount of time necessary for the output of complex Read article >

The post Lockheed Martin, NVIDIA to Help US Speed Climate Data to Researchers appeared first on NVIDIA Blog.

Categories
Misc

Get the Big Picture: Stream GeForce NOW in 4K Resolution on Samsung Smart TVs

Gaming in the living room is getting an upgrade with GeForce NOW. This GFN Thursday, kick off the weekend streaming GeForce NOW on Samsung TVs, with upcoming support for 4K resolution. Get started with the 10 new titles streaming this week. Plus, Yes by YTL Communications, a leading 5G provider in Malaysia, today announced it Read article >

The post Get the Big Picture: Stream GeForce NOW in 4K Resolution on Samsung Smart TVs appeared first on NVIDIA Blog.

Categories
Misc

NVIDIA Announces Financial Results for Third Quarter Fiscal 2023

NVIDIA today reported revenue for the third quarter ended October 30, 2022, of $5.93 billion, down 17% from a year ago and down 12% from the previous quarter.

Categories
Misc

Explainer: What Is Explainable AI?

Our trust in AI will largely depend on how well we understand it — explainable AI, or XAI, helps shine a flashlight into the “black box” of complexity in…

Our trust in AI will largely depend on how well we understand it — explainable AI, or XAI, helps shine a flashlight into the “black box” of complexity in AI models.

Categories
Offsites

Mixture-of-Experts with Expert Choice Routing

The capacity of a neural network to absorb information is limited by the number of its parameters, and as a consequence, finding more effective ways to increase model parameters has become a trend in deep learning research. Mixture-of-experts (MoE), a type of conditional computation where parts of the network are activated on a per-example basis, has been proposed as a way of dramatically increasing model capacity without a proportional increase in computation. In sparsely-activated variants of MoE models (e.g., Switch Transformer, GLaM, V-MoE), a subset of experts is selected on a per-token or per-example basis, thus creating sparsity in the network. Such models have demonstrated better scaling in multiple domains and better retention capability in a continual learning setting (e.g., Expert Gate). However, a poor expert routing strategy can cause certain experts to be under-trained, leading to an expert being under or over-specialized.

In “Mixture-of-Experts with Expert Choice Routing”, presented at NeurIPS 2022, we introduce a novel MoE routing algorithm called Expert Choice (EC). We discuss how this novel approach can achieve optimal load balancing in an MoE system while allowing heterogeneity in token-to-expert mapping. Compared to token-based routing and other routing methods in traditional MoE networks, EC demonstrates very strong training efficiency and downstream task scores. Our method resonates with one of the vision for Pathways, which is to enable heterogeneous mixture-of-experts via Pathways MPMD (multi program, multi data) support.

Overview of MoE Routing

MoE operates by adopting a number of experts, each as a sub-network, and activating only one or a few experts for each input token. A gating network must be chosen and optimized in order to route each token to the most suited expert(s). Depending on how tokens are mapped to experts, MoE can be sparse or dense. Sparse MoE only selects a subset of experts when routing each token, reducing computational cost as compared to a dense MoE. For example, recent work has implemented sparse routing via k-means clustering, linear assignment to maximize token-expert affinities, or hashing. Google also recently announced GLaM and V-MoE, both of which advance the state of the art in natural language processing and computer vision via sparsely gated MoE with top-k token routing, demonstrating better performance scaling with sparsely activated MoE layers. Many of these prior works used a token choice routing strategy in which the routing algorithm picks the best one or two experts for each token.

Token Choice Routing. The routing algorithm picks the top-1 or top-2 experts with highest affinity scores for each token. The affinity scores can be trained together with model parameters.

The independent token choice approach often leads to an imbalanced load of experts and under-utilization. In order to mitigate this, previous sparsely gated networks introduced additional auxiliary losses as regularization to prevent too many tokens being routed to a single expert, but the effectiveness was limited. As a result, token choice routings need to overprovision expert capacity by a significant margin (2x–8x of the calculated capacity) to avoid dropping tokens when there is a buffer overflow.

In addition to load imbalance, most prior works allocate a fixed number of experts to each token using a top-k function, regardless of the relative importance of different tokens. We argue that different tokens should be received by a variable number of experts, conditioned on token importance or difficulty.

Expert Choice Routing

To address the above issues, we propose a heterogeneous MoE that employs the expert choice routing method illustrated below. Instead of having tokens select the top-k experts, the experts with predetermined buffer capacity are assigned to the top-k tokens. This method guarantees even load balancing, allows a variable number of experts for each token, and achieves substantial gains in training efficiency and downstream performance. EC routing speeds up training convergence by over 2x in an 8B/64E (8 billion activated parameters, 64 experts) model, compared to the top-1 and top-2 gating counterparts in Switch Transformer, GShard, and GLaM.

Expert Choice Routing. Experts with predetermined buffer capacity are assigned top-k tokens, thus guaranteeing even load balancing. Each token can be received by a variable number of experts.

In EC routing, we set expert capacity k as the average tokens per expert in a batch of input sequences multiplied by a capacity factor, which determines the average number of experts that can be received by each token. To learn the token-to-expert affinity, our method produces a token-to-expert score matrix that is used to make routing decisions. The score matrix indicates the likelihood of a given token in a batch of input sequences being routed to a given expert.

Similar to Switch Transformer and GShard, we apply an MoE and gating function in the dense feedforward (FFN) layer, as it is the most computationally expensive part of a Transformer-based network. After producing the token-to-expert score matrix, a top-k function is applied along the token dimension for each expert to pick the most relevant tokens. A permutation function is then applied based on the generated indexes of the token, to create a hidden value with an additional expert dimension. The data is split across multiple experts such that all experts can execute the same computational kernel concurrently on a subset of tokens. Because a fixed expert capacity can be determined, we no longer overprovision expert capacity due to load imbalancing, thus significantly reducing training and inference step time by around 20% compared to GLaM.

Evaluation

To illustrate the effectiveness of Expert Choice routing, we first look at training efficiency and convergence. We use EC with a capacity factor of 2 (EC-CF2) to match the activated parameter size and computational cost on a per-token basis to GShard top-2 gating and run both for a fixed number of steps. EC-CF2 reaches the same perplexity as GShard top-2 in less than half the steps and, in addition, we find that each GShard top-2 step is 20% slower than our method.

We also scale the number of experts while fixing the expert size to 100M parameters for both EC and GShard top-2 methods. We find that both work well in terms of perplexity on the evaluation dataset during pre-training — having more experts consistently improves training perplexity.

Evaluation results on training convergence: EC routing yields 2x faster convergence at 8B/64E scale compared to top-2 gating used in GShard and GLaM (top). EC training perplexity scales better with the scaling of number of experts (bottom).

To validate whether improved perplexity directly translates to better performance in downstream tasks, we perform fine-tuning on 11 selected tasks from GLUE and SuperGLUE. We compare three MoE methods including Switch Transformer top-1 gating (ST Top-1), GShard top-2 gating (GS Top-2) and a version of our method (EC-CF2) that matches the activated parameters and computational cost of GS Top-2. The EC-CF2 method consistently outperforms the related methods and yields an average accuracy increase of more than 2% in a large 8B/64E setting. Comparing our 8B/64E model against its dense counterpart, our method achieves better fine-tuning results, increasing the average score by 3.4 points.

Our empirical results indicate that capping the number of experts for each token hurts the fine-tuning score by 1 point on average. This study confirms that allowing a variable number of experts per token is indeed helpful. On the other hand, we compute statistics on token-to-expert routing, particularly on the ratio of tokens that have been routed to a certain number of experts. We find that a majority of tokens have been routed to one or two experts while 23% have been routed to three or four experts and only about 3% tokens have been routed to more than four experts, thus verifying our hypothesis that expert choice routing learns to allocate a variable number of experts to tokens.

Final Thoughts

We propose a new routing method for sparsely activated mixture-of-experts models. This method addresses load imbalance and under-utilization of experts in conventional MoE methods, and enables the selection of different numbers of experts for each token. Our model demonstrates more than 2x training efficiency improvement when compared to the state-of-the-art GShard and Switch Transformer models, and achieves strong gains when fine-tuning on 11 datasets in the GLUE and SuperGLUE benchmark.

Our approach for expert choice routing enables heterogeneous MoE with straightforward algorithmic innovations. We hope that this may lead to more advances in this space at both the application and system levels.

Acknowledgements

Many collaborators across google research supported this work. We particularly thank Nan Du, Andrew Dai, Yanping Huang, and Zhifeng Chen for the initial ground work on MoE infrastructure and Tarzan datasets. We greatly appreciate Hanxiao Liu and Quoc Le for contributing the initial ideas and discussions. Tao Lei, Vincent Zhao, Da Huang, Chang Lan, Daiyi Peng, and Yifeng Lu contributed significantly on implementations and evaluations. Claire Cui, James Laudon, Martin Abadi, and Jeff Dean provided invaluable feedback and resource support.

Categories
Misc

New Release: NVIDIA RTX Global Illumination 1.3

NVIDIA RTX Global Illumination (RTXGI) 1.3 includes highly requested features such as dynamic library support, an increased maximum probe count per DDGI volume…

NVIDIA RTX Global Illumination (RTXGI) 1.3 includes highly requested features such as dynamic library support, an increased maximum probe count per DDGI volume by 2x, support for Shader Model 6.6 Dynamic Resources in D3D12, and more.