submitted by /u/1991viet [visit reddit] [comments] |
Trying to run GPT-2-master, getting error
Hi there! im very new at this so if i’ve left anything out please let me know!
so far ive downloaded the file, used cd to get into it and then have done this:
conda create -n py36 python=3.6 anaconda pip3 install tensorflow==1.12.0 pip3 install -r requirements.txt python3 download_model.py 124M
and upon running
python3 src/interactive_conditional_samples.py --top_k 40
Anaconda returns
C:ProgramDataAnaconda3envspy36libsite-packagestensorflowpythonframeworkdtypes.py:523: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint8 = np.dtype([("qint8", np.int8, 1)]) C:ProgramDataAnaconda3envspy36libsite-packagestensorflowpythonframeworkdtypes.py:524: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint8 = np.dtype([("quint8", np.uint8, 1)]) C:ProgramDataAnaconda3envspy36libsite-packagestensorflowpythonframeworkdtypes.py:525: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint16 = np.dtype([("qint16", np.int16, 1)]) C:ProgramDataAnaconda3envspy36libsite-packagestensorflowpythonframeworkdtypes.py:526: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint16 = np.dtype([("quint16", np.uint16, 1)]) C:ProgramDataAnaconda3envspy36libsite-packagestensorflowpythonframeworkdtypes.py:527: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint32 = np.dtype([("qint32", np.int32, 1)]) C:ProgramDataAnaconda3envspy36libsite-packagestensorflowpythonframeworkdtypes.py:532: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. np_resource = np.dtype([("resource", np.ubyte, 1)]) 2021-03-15 16:39:25.892397: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 Traceback (most recent call last): File "src/interactive_conditional_samples.py", line 91, in <module> fire.Fire(interact_model) File "C:ProgramDataAnaconda3envspy36libsite-packagesfirecore.py", line 141, in Fire component_trace = _Fire(component, args, parsed_flag_args, context, name) File "C:ProgramDataAnaconda3envspy36libsite-packagesfirecore.py", line 471, in _Fire target=component.__name__) File "C:ProgramDataAnaconda3envspy36libsite-packagesfirecore.py", line 681, in _CallAndUpdateTrace component = fn(*varargs, **kwargs) File "src/interactive_conditional_samples.py", line 65, in interact_model temperature=temperature, top_k=top_k, top_p=top_p File "C:UserslouisOneDriveDesktopgpt-2-testsrcsample.py", line 74, in sample_sequence past, prev, output = body(None, context, context) File "C:UserslouisOneDriveDesktopgpt-2-testsrcsample.py", line 66, in body logits = top_p_logits(logits, p=top_p) File "C:UserslouisOneDriveDesktopgpt-2-testsrcsample.py", line 28, in top_p_logits sorted_logits = tf.sort(logits, direction='DESCENDING', axis=-1) AttributeError: module 'tensorflow' has no attribute 'sort'
I have no idea what any of this means. if someone could help me out it would mean a lot! 🙂
submitted by /u/LouisHendrich
[visit reddit] [comments]
AI agent plays Contra
submitted by /u/1991viet [visit reddit] [comments] |
Trying to run GPT-2-master, getting error
Hi there! im very new at this so if i’ve left anything out please let me know!
so far ive downloaded the file, used cd to get into it and then have done this:
conda create -n py36 python=3.6 anaconda pip3 install tensorflow==1.12.0 pip3 install -r requirements.txt python3 download_model.py 124M
and upon running
python3 src/interactive_conditional_samples.py --top_k 40
Anaconda returns
C:ProgramDataAnaconda3envspy36libsite-packagestensorflowpythonframeworkdtypes.py:523: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint8 = np.dtype([("qint8", np.int8, 1)]) C:ProgramDataAnaconda3envspy36libsite-packagestensorflowpythonframeworkdtypes.py:524: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint8 = np.dtype([("quint8", np.uint8, 1)]) C:ProgramDataAnaconda3envspy36libsite-packagestensorflowpythonframeworkdtypes.py:525: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint16 = np.dtype([("qint16", np.int16, 1)]) C:ProgramDataAnaconda3envspy36libsite-packagestensorflowpythonframeworkdtypes.py:526: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint16 = np.dtype([("quint16", np.uint16, 1)]) C:ProgramDataAnaconda3envspy36libsite-packagestensorflowpythonframeworkdtypes.py:527: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint32 = np.dtype([("qint32", np.int32, 1)]) C:ProgramDataAnaconda3envspy36libsite-packagestensorflowpythonframeworkdtypes.py:532: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. np_resource = np.dtype([("resource", np.ubyte, 1)]) 2021-03-15 16:39:25.892397: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 Traceback (most recent call last): File "src/interactive_conditional_samples.py", line 91, in <module> fire.Fire(interact_model) File "C:ProgramDataAnaconda3envspy36libsite-packagesfirecore.py", line 141, in Fire component_trace = _Fire(component, args, parsed_flag_args, context, name) File "C:ProgramDataAnaconda3envspy36libsite-packagesfirecore.py", line 471, in _Fire target=component.__name__) File "C:ProgramDataAnaconda3envspy36libsite-packagesfirecore.py", line 681, in _CallAndUpdateTrace component = fn(*varargs, **kwargs) File "src/interactive_conditional_samples.py", line 65, in interact_model temperature=temperature, top_k=top_k, top_p=top_p File "C:UserslouisOneDriveDesktopgpt-2-testsrcsample.py", line 74, in sample_sequence past, prev, output = body(None, context, context) File "C:UserslouisOneDriveDesktopgpt-2-testsrcsample.py", line 66, in body logits = top_p_logits(logits, p=top_p) File "C:UserslouisOneDriveDesktopgpt-2-testsrcsample.py", line 28, in top_p_logits sorted_logits = tf.sort(logits, direction='DESCENDING', axis=-1) AttributeError: module 'tensorflow' has no attribute 'sort'
I have no idea what any of this means. if someone could help me out it would mean a lot! 🙂
submitted by /u/LouisHendrich
[visit reddit] [comments]
AI agent plays Contra
submitted by /u/1991viet [visit reddit] [comments] |
Trying to run GPT-2-master, getting error
Hi there! im very new at this so if i’ve left anything out please let me know!
so far ive downloaded the file, used cd to get into it and then have done this:
conda create -n py36 python=3.6 anaconda pip3 install tensorflow==1.12.0 pip3 install -r requirements.txt python3 download_model.py 124M
and upon running
python3 src/interactive_conditional_samples.py --top_k 40
Anaconda returns
C:ProgramDataAnaconda3envspy36libsite-packagestensorflowpythonframeworkdtypes.py:523: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint8 = np.dtype([("qint8", np.int8, 1)]) C:ProgramDataAnaconda3envspy36libsite-packagestensorflowpythonframeworkdtypes.py:524: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint8 = np.dtype([("quint8", np.uint8, 1)]) C:ProgramDataAnaconda3envspy36libsite-packagestensorflowpythonframeworkdtypes.py:525: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint16 = np.dtype([("qint16", np.int16, 1)]) C:ProgramDataAnaconda3envspy36libsite-packagestensorflowpythonframeworkdtypes.py:526: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint16 = np.dtype([("quint16", np.uint16, 1)]) C:ProgramDataAnaconda3envspy36libsite-packagestensorflowpythonframeworkdtypes.py:527: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint32 = np.dtype([("qint32", np.int32, 1)]) C:ProgramDataAnaconda3envspy36libsite-packagestensorflowpythonframeworkdtypes.py:532: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. np_resource = np.dtype([("resource", np.ubyte, 1)]) 2021-03-15 16:39:25.892397: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 Traceback (most recent call last): File "src/interactive_conditional_samples.py", line 91, in <module> fire.Fire(interact_model) File "C:ProgramDataAnaconda3envspy36libsite-packagesfirecore.py", line 141, in Fire component_trace = _Fire(component, args, parsed_flag_args, context, name) File "C:ProgramDataAnaconda3envspy36libsite-packagesfirecore.py", line 471, in _Fire target=component.__name__) File "C:ProgramDataAnaconda3envspy36libsite-packagesfirecore.py", line 681, in _CallAndUpdateTrace component = fn(*varargs, **kwargs) File "src/interactive_conditional_samples.py", line 65, in interact_model temperature=temperature, top_k=top_k, top_p=top_p File "C:UserslouisOneDriveDesktopgpt-2-testsrcsample.py", line 74, in sample_sequence past, prev, output = body(None, context, context) File "C:UserslouisOneDriveDesktopgpt-2-testsrcsample.py", line 66, in body logits = top_p_logits(logits, p=top_p) File "C:UserslouisOneDriveDesktopgpt-2-testsrcsample.py", line 28, in top_p_logits sorted_logits = tf.sort(logits, direction='DESCENDING', axis=-1) AttributeError: module 'tensorflow' has no attribute 'sort'
I have no idea what any of this means. if someone could help me out it would mean a lot! 🙂
submitted by /u/LouisHendrich
[visit reddit] [comments]
Today, we continue our exploration of multi-step time-series forecasting with torch. This post is the third in a series.
-
Initially, we covered basics of recurrent neural networks (RNNs), and trained a model to predict the very next value in a sequence. We also found we could forecast quite a few steps ahead by feeding back individual predictions in a loop.
-
Next, we built a model “natively” for multi-step prediction. A small multi-layer-perceptron (MLP) was used to project RNN output to several time points in the future.
Of both approaches, the latter was the more successful. But conceptually, it has an unsatisfying touch to it: When the MLP extrapolates and generates output for, say, ten consecutive points in time, there is no causal relation between those. (Imagine a weather forecast for ten days that never got updated.)
Now, we’d like to try something more intuitively appealing. The input is a sequence; the output is a sequence. In natural language processing (NLP), this type of task is very common: It’s exactly the kind of situation we see with machine translation or summarization.
Quite fittingly, the types of models employed to these ends are named sequence-to-sequence models (often abbreviated seq2seq). In a nutshell, they split up the task into two components: an encoding and a decoding part. The former is done just once per input-target pair. The latter is done in a loop, as in our first try. But the decoder has more information at its disposal: At each iteration, its processing is based on the previous prediction as well as previous state. That previous state will be the encoder’s when a loop is started, and its own ever thereafter.
Before discussing the model in detail, we need to adapt our data input mechanism.
Data input
We continue working with vic_elec , provided by tsibbledata.
Again, the dataset definition in the current post looks a bit different from the way it did before; it’s the shape of the target that differs. This time, y equals x, shifted to the left by one.
The reason we do this is owed to the way we are going to train the network. With seq2seq, people often use a technique called “teacher forcing” where, instead of feeding back its own prediction into the decoder module, you pass it the value it should have predicted. To be clear, this is done during training only, and to a configurable degree.
n_timesteps <- 7 * 24 * 2 n_forecast <- n_timesteps vic_elec_get_year <- function(year, month = NULL) { vic_elec %>% filter(year(Date) == year, month(Date) == if (is.null(month)) month(Date) else month) %>% as_tibble() %>% select(Demand) } elec_train <- vic_elec_get_year(2012) %>% as.matrix() elec_valid <- vic_elec_get_year(2013) %>% as.matrix() elec_test <- vic_elec_get_year(2014, 1) %>% as.matrix() train_mean <- mean(elec_train) train_sd <- sd(elec_train) elec_dataset <- dataset( name = "elec_dataset", initialize = function(x, n_timesteps, sample_frac = 1) { self$n_timesteps <- n_timesteps self$x <- torch_tensor((x - train_mean) / train_sd) n <- length(self$x) - self$n_timesteps - 1 self$starts <- sort(sample.int( n = n, size = n * sample_frac )) }, .getitem = function(i) { start <- self$starts[i] end <- start + self$n_timesteps - 1 lag <- 1 list( x = self$x[start:end], y = self$x[(start+lag):(end+lag)]$squeeze(2) ) }, .length = function() { length(self$starts) } )
Dataset as well as dataloader instantations then can proceed as before.
batch_size <- 32 train_ds <- elec_dataset(elec_train, n_timesteps, sample_frac = 0.5) train_dl <- train_ds %>% dataloader(batch_size = batch_size, shuffle = TRUE) valid_ds <- elec_dataset(elec_valid, n_timesteps, sample_frac = 0.5) valid_dl <- valid_ds %>% dataloader(batch_size = batch_size) test_ds <- elec_dataset(elec_test, n_timesteps) test_dl <- test_ds %>% dataloader(batch_size = 1)
Model
Technically, the model consists of three modules: the aforementioned encoder and decoder, and the seq2seq module that orchestrates them.
Encoder
The encoder takes its input and runs it through an RNN. Of the two things returned by a recurrent neural network, outputs and state, so far we’ve only been using output. This time, we do the opposite: We throw away the outputs, and only return the state.
If the RNN in question is a GRU (and assuming that of the outputs, we take just the final time step, which is what we’ve been doing throughout), there really is no difference: The final state equals the final output. If it’s an LSTM, however, there is a second kind of state, the “cell state”. In that case, returning the state instead of the final output will carry more information.
encoder_module <- nn_module( initialize = function(type, input_size, hidden_size, num_layers = 1, dropout = 0) { self$type <- type self$rnn <- if (self$type == "gru") { nn_gru( input_size = input_size, hidden_size = hidden_size, num_layers = num_layers, dropout = dropout, batch_first = TRUE ) } else { nn_lstm( input_size = input_size, hidden_size = hidden_size, num_layers = num_layers, dropout = dropout, batch_first = TRUE ) } }, forward = function(x) { x <- self$rnn(x) # return last states for all layers # per layer, a single tensor for GRU, a list of 2 tensors for LSTM x <- x[[2]] x } )
Decoder
In the decoder, just like in the encoder, the main component is an RNN. In contrast to previously-shown architectures, though, it does not just return a prediction. It also reports back the RNN’s final state.
decoder_module <- nn_module( initialize = function(type, input_size, hidden_size, num_layers = 1) { self$type <- type self$rnn <- if (self$type == "gru") { nn_gru( input_size = input_size, hidden_size = hidden_size, num_layers = num_layers, batch_first = TRUE ) } else { nn_lstm( input_size = input_size, hidden_size = hidden_size, num_layers = num_layers, batch_first = TRUE ) } self$linear <- nn_linear(hidden_size, 1) }, forward = function(x, state) { # input to forward: # x is (batch_size, 1, 1) # state is (1, batch_size, hidden_size) x <- self$rnn(x, state) # break up RNN return values # output is (batch_size, 1, hidden_size) # next_hidden is c(output, next_hidden) %<-% x output <- output$squeeze(2) output <- self$linear(output) list(output, next_hidden) } )
seq2seq module
seq2seq is where the action happens. The plan is to encode once, then call the decoder in a loop.
If you look back to decoder forward(), you see that it takes two arguments: x and state.
Depending on the context, x corresponds to one of three things: final input, preceding prediction, or prior ground truth.
-
The very first time the decoder is called on an input sequence, x maps to the final input value. This is different from a task like machine translation, where you would pass in a start token. With time series, though, we’d like to continue where the actual measurements stop.
-
In further calls, we want the decoder to continue from its most recent prediction. It is only logical, thus, to pass back the preceding forecast.
-
That said, in NLP a technique called “teacher forcing” is commonly used to speed up training. With teacher forcing, instead of the forecast we pass the actual ground truth, the thing the decoder should have predicted. We do that only in a configurable fraction of cases, and – naturally – only while training. The rationale behind this technique is that without this form of re-calibration, consecutive prediction errors can quickly erase any remaining signal.
state, too, is polyvalent. But here, there are just two possibilities: encoder state and decoder state.
-
The first time the decoder is called, it is “seeded” with the final state from the encoder. Note how this is the only time we make use of the encoding.
-
From then on, the decoder’s own previous state will be passed. Remember how it returns two values, forecast and state?
seq2seq_module <- nn_module( initialize = function(type, input_size, hidden_size, n_forecast, num_layers = 1, encoder_dropout = 0) { self$encoder <- encoder_module(type = type, input_size = input_size, hidden_size = hidden_size, num_layers, encoder_dropout) self$decoder <- decoder_module(type = type, input_size = input_size, hidden_size = hidden_size, num_layers) self$n_forecast <- n_forecast }, forward = function(x, y, teacher_forcing_ratio) { # prepare empty output outputs <- torch_zeros(dim(x)[1], self$n_forecast)$to(device = device) # encode current input sequence hidden <- self$encoder(x) # prime decoder with final input value and hidden state from the encoder out <- self$decoder(x[ , n_timesteps, , drop = FALSE], hidden) # decompose into predictions and decoder state # pred is (batch_size, 1) # state is (1, batch_size, hidden_size) c(pred, state) %<-% out # store first prediction outputs[ , 1] <- pred$squeeze(2) # iterate to generate remaining forecasts for (t in 2:self$n_forecast) { # call decoder on either ground truth or previous prediction, plus previous decoder state teacher_forcing <- runif(1) < teacher_forcing_ratio input <- if (teacher_forcing == TRUE) y[ , t - 1, drop = FALSE] else pred input <- input$unsqueeze(3) out <- self$decoder(input, state) # again, decompose decoder return values c(pred, state) %<-% out # and store current prediction outputs[ , t] <- pred$squeeze(2) } outputs } ) net <- seq2seq_module("gru", input_size = 1, hidden_size = 32, n_forecast = n_forecast) # training RNNs on the GPU currently prints a warning that may clutter # the console # see https://github.com/mlverse/torch/issues/461 # alternatively, use # device <- "cpu" device <- torch_device(if (cuda_is_available()) "cuda" else "cpu") net <- net$to(device = device)
Training
The training procedure is mainly unchanged. We do, however, need to decide about teacher_forcing_ratio, the proportion of input sequences we want to perform re-calibration on. In valid_batch(), this should always be 0, while in train_batch(), it’s up to us (or rather, experimentation). Here, we set it to 0.3.
optimizer <- optim_adam(net$parameters, lr = 0.001) num_epochs <- 50 train_batch <- function(b, teacher_forcing_ratio) { optimizer$zero_grad() output <- net(b$x$to(device = device), b$y$to(device = device), teacher_forcing_ratio) target <- b$y$to(device = device) loss <- nnf_mse_loss(output, target) loss$backward() optimizer$step() loss$item() } valid_batch <- function(b, teacher_forcing_ratio = 0) { output <- net(b$x$to(device = device), b$y$to(device = device), teacher_forcing_ratio) target <- b$y$to(device = device) loss <- nnf_mse_loss(output, target) loss$item() } for (epoch in 1:num_epochs) { net$train() train_loss <- c() coro::loop(for (b in train_dl) { loss <-train_batch(b, teacher_forcing_ratio = 0.3) train_loss <- c(train_loss, loss) }) cat(sprintf("nEpoch %d, training: loss: %3.5f n", epoch, mean(train_loss))) net$eval() valid_loss <- c() coro::loop(for (b in valid_dl) { loss <- valid_batch(b) valid_loss <- c(valid_loss, loss) }) cat(sprintf("nEpoch %d, validation: loss: %3.5f n", epoch, mean(valid_loss))) }
Epoch 1, training: loss: 0.37961 Epoch 1, validation: loss: 1.10699 Epoch 2, training: loss: 0.19355 Epoch 2, validation: loss: 1.26462 # ... # ... Epoch 49, training: loss: 0.03233 Epoch 49, validation: loss: 0.62286 Epoch 50, training: loss: 0.03091 Epoch 50, validation: loss: 0.54457
It’s interesting to compare performances for different settings of teacher_forcing_ratio. With a setting of 0.5, training loss decreases a lot more slowly; the opposite is seen with a setting of 0. Validation loss, however, is not affected significantly.
Evaluation
The code to inspect test-set forecasts is unchanged.
net$eval() test_preds <- vector(mode = "list", length = length(test_dl)) i <- 1 coro::loop(for (b in test_dl) { input <- b$x output <- net(input$to(device = device)) preds <- as.numeric(output) test_preds[[i]] <- preds i <<- i + 1 }) vic_elec_jan_2014 <- vic_elec %>% filter(year(Date) == 2014, month(Date) == 1) test_pred1 <- test_preds[[1]] test_pred1 <- c(rep(NA, n_timesteps), test_pred1, rep(NA, nrow(vic_elec_jan_2014) - n_timesteps - n_forecast)) test_pred2 <- test_preds[[408]] test_pred2 <- c(rep(NA, n_timesteps + 407), test_pred2, rep(NA, nrow(vic_elec_jan_2014) - 407 - n_timesteps - n_forecast)) test_pred3 <- test_preds[[817]] test_pred3 <- c(rep(NA, nrow(vic_elec_jan_2014) - n_forecast), test_pred3) preds_ts <- vic_elec_jan_2014 %>% select(Demand) %>% add_column( mlp_ex_1 = test_pred1 * train_sd + train_mean, mlp_ex_2 = test_pred2 * train_sd + train_mean, mlp_ex_3 = test_pred3 * train_sd + train_mean) %>% pivot_longer(-Time) %>% update_tsibble(key = name) preds_ts %>% autoplot() + scale_colour_manual(values = c("#08c5d1", "#00353f", "#ffbf66", "#d46f4d")) + theme_minimal()
(#fig:unnamed-chunk-8)One-week-ahead predictions for January, 2014.
Comparing this to the forecast obtained from last time’s RNN-MLP combo, we don’t see much of a difference. Is this surprising? To me it is. If asked to speculate about the reason, I would probably say this: In all of the architectures we’ve used so far, the main carrier of information has been the final hidden state of the RNN (one and only RNN in the two previous setups, encoder RNN in this one). It will be interesting to see what happens in the last part of this series, when we augment the encoder-decoder architecture by attention.
Thanks for reading!
Photo by Suzuha Kozuki on Unsplash
Today, we continue our exploration of multi-step time-series forecasting with torch. This post is the third in a series.
-
Initially, we covered basics of recurrent neural networks (RNNs), and trained a model to predict the very next value in a sequence. We also found we could forecast quite a few steps ahead by feeding back individual predictions in a loop.
-
Next, we built a model “natively” for multi-step prediction. A small multi-layer-perceptron (MLP) was used to project RNN output to several time points in the future.
Of both approaches, the latter was the more successful. But conceptually, it has an unsatisfying touch to it: When the MLP extrapolates and generates output for, say, ten consecutive points in time, there is no causal relation between those. (Imagine a weather forecast for ten days that never got updated.)
Now, we’d like to try something more intuitively appealing. The input is a sequence; the output is a sequence. In natural language processing (NLP), this type of task is very common: It’s exactly the kind of situation we see with machine translation or summarization.
Quite fittingly, the types of models employed to these ends are named sequence-to-sequence models (often abbreviated seq2seq). In a nutshell, they split up the task into two components: an encoding and a decoding part. The former is done just once per input-target pair. The latter is done in a loop, as in our first try. But the decoder has more information at its disposal: At each iteration, its processing is based on the previous prediction as well as previous state. That previous state will be the encoder’s when a loop is started, and its own ever thereafter.
Before discussing the model in detail, we need to adapt our data input mechanism.
Data input
We continue working with vic_elec , provided by tsibbledata.
Again, the dataset definition in the current post looks a bit different from the way it did before; it’s the shape of the target that differs. This time, y equals x, shifted to the left by one.
The reason we do this is owed to the way we are going to train the network. With seq2seq, people often use a technique called “teacher forcing” where, instead of feeding back its own prediction into the decoder module, you pass it the value it should have predicted. To be clear, this is done during training only, and to a configurable degree.
n_timesteps <- 7 * 24 * 2 n_forecast <- n_timesteps vic_elec_get_year <- function(year, month = NULL) { vic_elec %>% filter(year(Date) == year, month(Date) == if (is.null(month)) month(Date) else month) %>% as_tibble() %>% select(Demand) } elec_train <- vic_elec_get_year(2012) %>% as.matrix() elec_valid <- vic_elec_get_year(2013) %>% as.matrix() elec_test <- vic_elec_get_year(2014, 1) %>% as.matrix() train_mean <- mean(elec_train) train_sd <- sd(elec_train) elec_dataset <- dataset( name = "elec_dataset", initialize = function(x, n_timesteps, sample_frac = 1) { self$n_timesteps <- n_timesteps self$x <- torch_tensor((x - train_mean) / train_sd) n <- length(self$x) - self$n_timesteps - 1 self$starts <- sort(sample.int( n = n, size = n * sample_frac )) }, .getitem = function(i) { start <- self$starts[i] end <- start + self$n_timesteps - 1 lag <- 1 list( x = self$x[start:end], y = self$x[(start+lag):(end+lag)]$squeeze(2) ) }, .length = function() { length(self$starts) } )
Dataset as well as dataloader instantations then can proceed as before.
batch_size <- 32 train_ds <- elec_dataset(elec_train, n_timesteps, sample_frac = 0.5) train_dl <- train_ds %>% dataloader(batch_size = batch_size, shuffle = TRUE) valid_ds <- elec_dataset(elec_valid, n_timesteps, sample_frac = 0.5) valid_dl <- valid_ds %>% dataloader(batch_size = batch_size) test_ds <- elec_dataset(elec_test, n_timesteps) test_dl <- test_ds %>% dataloader(batch_size = 1)
Model
Technically, the model consists of three modules: the aforementioned encoder and decoder, and the seq2seq module that orchestrates them.
Encoder
The encoder takes its input and runs it through an RNN. Of the two things returned by a recurrent neural network, outputs and state, so far we’ve only been using output. This time, we do the opposite: We throw away the outputs, and only return the state.
If the RNN in question is a GRU (and assuming that of the outputs, we take just the final time step, which is what we’ve been doing throughout), there really is no difference: The final state equals the final output. If it’s an LSTM, however, there is a second kind of state, the “cell state”. In that case, returning the state instead of the final output will carry more information.
encoder_module <- nn_module( initialize = function(type, input_size, hidden_size, num_layers = 1, dropout = 0) { self$type <- type self$rnn <- if (self$type == "gru") { nn_gru( input_size = input_size, hidden_size = hidden_size, num_layers = num_layers, dropout = dropout, batch_first = TRUE ) } else { nn_lstm( input_size = input_size, hidden_size = hidden_size, num_layers = num_layers, dropout = dropout, batch_first = TRUE ) } }, forward = function(x) { x <- self$rnn(x) # return last states for all layers # per layer, a single tensor for GRU, a list of 2 tensors for LSTM x <- x[[2]] x } )
Decoder
In the decoder, just like in the encoder, the main component is an RNN. In contrast to previously-shown architectures, though, it does not just return a prediction. It also reports back the RNN’s final state.
decoder_module <- nn_module( initialize = function(type, input_size, hidden_size, num_layers = 1) { self$type <- type self$rnn <- if (self$type == "gru") { nn_gru( input_size = input_size, hidden_size = hidden_size, num_layers = num_layers, batch_first = TRUE ) } else { nn_lstm( input_size = input_size, hidden_size = hidden_size, num_layers = num_layers, batch_first = TRUE ) } self$linear <- nn_linear(hidden_size, 1) }, forward = function(x, state) { # input to forward: # x is (batch_size, 1, 1) # state is (1, batch_size, hidden_size) x <- self$rnn(x, state) # break up RNN return values # output is (batch_size, 1, hidden_size) # next_hidden is c(output, next_hidden) %<-% x output <- output$squeeze(2) output <- self$linear(output) list(output, next_hidden) } )
seq2seq module
seq2seq is where the action happens. The plan is to encode once, then call the decoder in a loop.
If you look back to decoder forward(), you see that it takes two arguments: x and state.
Depending on the context, x corresponds to one of three things: final input, preceding prediction, or prior ground truth.
-
The very first time the decoder is called on an input sequence, x maps to the final input value. This is different from a task like machine translation, where you would pass in a start token. With time series, though, we’d like to continue where the actual measurements stop.
-
In further calls, we want the decoder to continue from its most recent prediction. It is only logical, thus, to pass back the preceding forecast.
-
That said, in NLP a technique called “teacher forcing” is commonly used to speed up training. With teacher forcing, instead of the forecast we pass the actual ground truth, the thing the decoder should have predicted. We do that only in a configurable fraction of cases, and – naturally – only while training. The rationale behind this technique is that without this form of re-calibration, consecutive prediction errors can quickly erase any remaining signal.
state, too, is polyvalent. But here, there are just two possibilities: encoder state and decoder state.
-
The first time the decoder is called, it is “seeded” with the final state from the encoder. Note how this is the only time we make use of the encoding.
-
From then on, the decoder’s own previous state will be passed. Remember how it returns two values, forecast and state?
seq2seq_module <- nn_module( initialize = function(type, input_size, hidden_size, n_forecast, num_layers = 1, encoder_dropout = 0) { self$encoder <- encoder_module(type = type, input_size = input_size, hidden_size = hidden_size, num_layers, encoder_dropout) self$decoder <- decoder_module(type = type, input_size = input_size, hidden_size = hidden_size, num_layers) self$n_forecast <- n_forecast }, forward = function(x, y, teacher_forcing_ratio) { # prepare empty output outputs <- torch_zeros(dim(x)[1], self$n_forecast)$to(device = device) # encode current input sequence hidden <- self$encoder(x) # prime decoder with final input value and hidden state from the encoder out <- self$decoder(x[ , n_timesteps, , drop = FALSE], hidden) # decompose into predictions and decoder state # pred is (batch_size, 1) # state is (1, batch_size, hidden_size) c(pred, state) %<-% out # store first prediction outputs[ , 1] <- pred$squeeze(2) # iterate to generate remaining forecasts for (t in 2:self$n_forecast) { # call decoder on either ground truth or previous prediction, plus previous decoder state teacher_forcing <- runif(1) < teacher_forcing_ratio input <- if (teacher_forcing == TRUE) y[ , t - 1, drop = FALSE] else pred input <- input$unsqueeze(3) out <- self$decoder(input, state) # again, decompose decoder return values c(pred, state) %<-% out # and store current prediction outputs[ , t] <- pred$squeeze(2) } outputs } ) net <- seq2seq_module("gru", input_size = 1, hidden_size = 32, n_forecast = n_forecast) # training RNNs on the GPU currently prints a warning that may clutter # the console # see https://github.com/mlverse/torch/issues/461 # alternatively, use # device <- "cpu" device <- torch_device(if (cuda_is_available()) "cuda" else "cpu") net <- net$to(device = device)
Training
The training procedure is mainly unchanged. We do, however, need to decide about teacher_forcing_ratio, the proportion of input sequences we want to perform re-calibration on. In valid_batch(), this should always be 0, while in train_batch(), it’s up to us (or rather, experimentation). Here, we set it to 0.3.
optimizer <- optim_adam(net$parameters, lr = 0.001) num_epochs <- 50 train_batch <- function(b, teacher_forcing_ratio) { optimizer$zero_grad() output <- net(b$x$to(device = device), b$y$to(device = device), teacher_forcing_ratio) target <- b$y$to(device = device) loss <- nnf_mse_loss(output, target) loss$backward() optimizer$step() loss$item() } valid_batch <- function(b, teacher_forcing_ratio = 0) { output <- net(b$x$to(device = device), b$y$to(device = device), teacher_forcing_ratio) target <- b$y$to(device = device) loss <- nnf_mse_loss(output, target) loss$item() } for (epoch in 1:num_epochs) { net$train() train_loss <- c() coro::loop(for (b in train_dl) { loss <-train_batch(b, teacher_forcing_ratio = 0.3) train_loss <- c(train_loss, loss) }) cat(sprintf("nEpoch %d, training: loss: %3.5f n", epoch, mean(train_loss))) net$eval() valid_loss <- c() coro::loop(for (b in valid_dl) { loss <- valid_batch(b) valid_loss <- c(valid_loss, loss) }) cat(sprintf("nEpoch %d, validation: loss: %3.5f n", epoch, mean(valid_loss))) }
Epoch 1, training: loss: 0.37961 Epoch 1, validation: loss: 1.10699 Epoch 2, training: loss: 0.19355 Epoch 2, validation: loss: 1.26462 # ... # ... Epoch 49, training: loss: 0.03233 Epoch 49, validation: loss: 0.62286 Epoch 50, training: loss: 0.03091 Epoch 50, validation: loss: 0.54457
It’s interesting to compare performances for different settings of teacher_forcing_ratio. With a setting of 0.5, training loss decreases a lot more slowly; the opposite is seen with a setting of 0. Validation loss, however, is not affected significantly.
Evaluation
The code to inspect test-set forecasts is unchanged.
net$eval() test_preds <- vector(mode = "list", length = length(test_dl)) i <- 1 coro::loop(for (b in test_dl) { input <- b$x output <- net(input$to(device = device)) preds <- as.numeric(output) test_preds[[i]] <- preds i <<- i + 1 }) vic_elec_jan_2014 <- vic_elec %>% filter(year(Date) == 2014, month(Date) == 1) test_pred1 <- test_preds[[1]] test_pred1 <- c(rep(NA, n_timesteps), test_pred1, rep(NA, nrow(vic_elec_jan_2014) - n_timesteps - n_forecast)) test_pred2 <- test_preds[[408]] test_pred2 <- c(rep(NA, n_timesteps + 407), test_pred2, rep(NA, nrow(vic_elec_jan_2014) - 407 - n_timesteps - n_forecast)) test_pred3 <- test_preds[[817]] test_pred3 <- c(rep(NA, nrow(vic_elec_jan_2014) - n_forecast), test_pred3) preds_ts <- vic_elec_jan_2014 %>% select(Demand) %>% add_column( mlp_ex_1 = test_pred1 * train_sd + train_mean, mlp_ex_2 = test_pred2 * train_sd + train_mean, mlp_ex_3 = test_pred3 * train_sd + train_mean) %>% pivot_longer(-Time) %>% update_tsibble(key = name) preds_ts %>% autoplot() + scale_colour_manual(values = c("#08c5d1", "#00353f", "#ffbf66", "#d46f4d")) + theme_minimal()
(#fig:unnamed-chunk-8)One-week-ahead predictions for January, 2014.
Comparing this to the forecast obtained from last time’s RNN-MLP combo, we don’t see much of a difference. Is this surprising? To me it is. If asked to speculate about the reason, I would probably say this: In all of the architectures we’ve used so far, the main carrier of information has been the final hidden state of the RNN (one and only RNN in the two previous setups, encoder RNN in this one). It will be interesting to see what happens in the last part of this series, when we augment the encoder-decoder architecture by attention.
Thanks for reading!
Photo by Suzuha Kozuki on Unsplash
Scientists from the Wisconsin IceCube Particle Astrophysics Center are using ray tracing on NVIDIA GPUs to accelerate simulations of subatomic particles by hundreds of times.
Scientists from the Wisconsin IceCube Particle Astrophysics Center are using ray tracing on NVIDIA GPUs to accelerate simulations of subatomic particles by hundreds of times.Â
Using NVIDIA RTX GPUs in a subsystem of the Texas Advanced Computing Center’s Frontera supercomputer, the researchers can calculate the path of light as it travels through a one cubic kilometer block of ice at Antarctica’s IceCube Neutrino Observatory.Â
They’re analyzing neutrinos, tiny particles created by cosmic rays that interact with Earth’s atmosphere. The ice block, located at the Amundsen-Scott South Pole Station, is rigged with sensors over a thousand feet under the surface, which transform signals from neutrino interactions into digital data.Â
“Based on the analysis, researchers are also able to determine where in the sky the particle came from, its energy, and sometimes, what type of neutrino — electron, muon or tau — it was,” said James Madson, executive director at IceCube.
The researchers are especially interested in neutrino events, or spikes in activity that can be traced to high-energy cosmic events billions of light years away. But these analyses require significant computational resources, making the IceCube team among the largest users of the Frontera GPU subsystem.Â
To better understand how neutrinos travel through the observatory’s ice block, the scientists use GPU-accelerated ray tracing to simulate how light propagates through the ice, tracking high-energy particles that are produced when neutrinos interact. Defects in the ice can cause the light to scatter or be absorbed, making it harder to analyze.Â
“Large scale simulations of the IceCube facility and the data it creates allow us to rapidly and accurately determine the properties of these neutrinos, which in turn exposes the physics of the most energetic events in the universe,” said Niall Gaffney, director of data intensive computing at the Texas Advanced Computing Center. “This is key to validating the fundamental quantum-mechanical physics in environments that cannot be practically replicated on earth.”
Read more from the Texas Advanced Computing Center >>
Contactless Sleep Sensing in Nest Hub
People often turn to technology to manage their health and wellbeing, whether it is to record their daily exercise, measure their heart rate, or increasingly, to understand their sleep patterns. Sleep is foundational to a person’s everyday wellbeing and can be impacted by (and in turn, have an impact on) other aspects of one’s life — mood, energy, diet, productivity, and more.
As part of our ongoing efforts to support people’s health and happiness, today we announced Sleep Sensing in the new Nest Hub, which uses radar-based sleep tracking in addition to an algorithm for cough and snore detection. While not intended for medical purposes1, Sleep Sensing is an opt-in feature that can help users better understand their nighttime wellness using a contactless bedside setup. Here we describe the technologies behind Sleep Sensing and discuss how we leverage on-device signal processing to enable sleep monitoring (comparable to other clinical- and consumer-grade devices) in a way that protects user privacy.
Soli for Sleep Tracking
Sleep Sensing in Nest Hub demonstrates the first wellness application of Soli, a miniature radar sensor that can be used for gesture sensing at various scales, from a finger tap to movements of a person’s body. In Pixel 4, Soli powers Motion Sense, enabling touchless interactions with the phone to skip songs, snooze alarms, and silence phone calls. We extended this technology and developed an embedded Soli-based algorithm that could be implemented in Nest Hub for sleep tracking.
Soli consists of a millimeter-wave frequency-modulated continuous wave (FMCW) radar transceiver that emits an ultra-low power radio wave and measures the reflected signal from the scene of interest. The frequency spectrum of the reflected signal contains an aggregate representation of the distance and velocity of objects within the scene. This signal can be processed to isolate a specified range of interest, such as a user’s sleeping area, and to detect and characterize a wide range of motions within this region, ranging from large body movements to sub-centimeter respiration.
In order to make use of this signal for Sleep Sensing, it was necessary to design an algorithm that could determine whether a person is present in the specified sleeping area and, if so, whether the person is asleep or awake. We designed a custom machine-learning (ML) model to efficiently process a continuous stream of 3D radar tensors (summarizing activity over a range of distances, frequencies, and time) and automatically classify each feature into one of three possible states: absent, awake, and asleep.
To train and evaluate the model, we recorded more than a million hours of radar data from thousands of individuals, along with thousands of sleep diaries, reference sensor recordings, and external annotations. We then leveraged the TensorFlow Extended framework to construct a training pipeline to process this data and produce an efficient TensorFlow Lite embedded model. In addition, we created an automatic calibration algorithm that runs during setup to configure the part of the scene on which the classifier will focus. This ensures that the algorithm ignores motion from a person on the other side of the bed or from other areas of the room, such as ceiling fans and swaying curtains.
To validate the accuracy of the algorithm, we compared it to the gold-standard of sleep-wake determination, the polysomnogram sleep study, in a cohort of 33 “healthy sleepers” (those without significant sleep issues, like sleep apnea or insomnia) across a broad age range (19-78 years of age). Sleep studies are typically conducted in clinical and research laboratories in order to collect various body signals (brain waves, muscle activity, respiratory and heart rate measurements, body movement and position, and snoring), which can then be interpreted by trained sleep experts to determine stages of sleep and identify relevant events. To account for variability in how different scorers apply the American Academy of Sleep Medicine’s staging and scoring rules, our study used two board-certified sleep technologists to independently annotate each night of sleep and establish a definitive groundtruth.
We compared our Sleep Sensing algorithm’s outputs to the corresponding groundtruth sleep and wake labels for every 30-second epoch of time to compute standard performance metrics (e.g., sensitivity and specificity). While not a true head-to-head comparison, this study’s results can be compared against previously published studies in similar cohorts with comparable methodologies in order to get a rough estimate of performance. In “Sleep-wake detection with a contactless, bedside radar sleep sensing system”, we share the full details of these validation results, demonstrating sleep-wake estimation equivalent to or, in some cases, better than current clinical and consumer sleep tracking devices.
Understanding Sleep Quality with Audio Sensing
The Soli-based sleep tracking algorithm described above gives users a convenient and reliable way to see how much sleep they are getting and when sleep disruptions occur. However, to understand and improve their sleep, users also need to understand why their sleep is disrupted. To assist with this, Nest Hub uses its array of sensors to track common sleep disturbances, such as light level changes or uncomfortable room temperature. In addition to these, respiratory events like coughing and snoring are also frequent sources of disturbance, but people are often unaware of these events.
As with other audio-processing applications like speech or music recognition, coughing and snoring exhibit distinctive temporal patterns in the audio frequency spectrum, and with sufficient data an ML model can be trained to reliably recognize these patterns while simultaneously ignoring a wide variety of background noises, from a humming fan to passing cars. The model uses entirely on-device audio processing with privacy-preserving analysis, with no raw audio data sent to Google’s servers. A user can then opt to save the outputs of the processing (sound occurrences, such as the number of coughs and snore minutes) in Google Fit, in order to view personal insights and summaries of their night time wellness over time.
The Nest Hub displays when snoring and coughing may have disturbed a user’s sleep (top) and can track weekly trends (bottom). |
To train the model, we assembled a large, hand-labeled dataset, drawing examples from the publicly available AudioSet research dataset as well as hundreds of thousands of additional real-world audio clips contributed by thousands of individuals.
Log-Mel spectrogram inputs comparing cough (left) and snore (right) audio snippets. |
When a user opts in to cough and snore tracking on their bedside Nest Hub, the device first uses its Soli-based sleep algorithms to detect when a user goes to bed. Once it detects that a user has fallen asleep, it then activates its on-device sound sensing model and begins processing audio. The model works by continuously extracting spectrogram-like features from the audio input and feeding them through a convolutional neural network classifier in order to estimate the probability that coughing or snoring is happening at a given instant in time. These estimates are analyzed over the course of the night to produce a report of the overall cough count and snoring duration and highlight exactly when these events occurred.
Conclusion
The new Nest Hub, with its underlying Sleep Sensing features, is a first step in empowering users to understand their nighttime wellness using privacy-preserving radar and audio signals. We continue to research additional ways that ambient sensing and the predictive ability of consumer devices could help people better understand their daily health and wellness in a privacy-preserving way.
Acknowledgements
This work involved collaborative efforts from a multidisciplinary team of software engineers, researchers, clinicians, and cross-functional contributors. Special thanks to D. Shin for his significant contributions to this technology and blogpost, and Dr. Logan Schneider, visiting sleep neurologist affiliated with the Stanford/VA Alzheimer’s Center and Stanford Sleep Center, whose clinical expertise and contributions were invaluable to continuously guide this research. In addition to the authors, key contributors to this research from Google Health include Jeffrey Yu, Allen Jiang, Arno Charton, Jake Garrison, Navreet Gill, Sinan Hersek, Yijie Hong, Jonathan Hsu, Andi Janti, Ajay Kannan, Mukil Kesavan, Linda Lei, Kunal Okhandiar‎, Xiaojun Ping, Jo Schaeffer, Neil Smith, Siddhant Swaroop, Bhavana Koka, Anupam Pathak, Dr. Jim Taylor, and the extended team. Another special thanks to Ken Mixter for his support and contributions to the development and integration of this technology into Nest Hub. Thanks to Mark Malhotra and Shwetak Patel for their ongoing leadership, as well as the Nest, Fit, Soli, and Assistant teams we collaborated with to build and validate Sleep Sensing on Nest Hub.
1 Not intended to diagnose, cure, mitigate, prevent or treat any disease or condition. ↩