The impossible chessboard puzzle
Hamming codes and error correction
The responsible research and development of machine learning (ML) can play a pivotal role in helping to solve a wide variety of societal challenges. At Google, our research reflects our AI Principles, from helping to protect patients from medication errors and improving flood forecasting models, to presenting methods that tackle unfair bias in products, such as Google Translate, and providing resources for other researchers to do the same.
One broad category for applying ML responsibly is the task of classification — systems that sort data into labeled categories. At Google, such models are used throughout our products to enforce policies, ranging from the detection of hate speech to age-appropriate content filtering. While these classifiers serve vital functions, it is also essential that they are built in ways that minimize unfair biases for users.
Today, we are announcing the release of MinDiff, a new regularization technique available in the TF Model Remediation library for effectively and efficiently mitigating unfair biases when training ML models. In this post, we discuss the research behind this technique and explain how it addresses the practical constraints and requirements we’ve observed when incorporating it in Google’s products.
Unfair Biases in Classifiers
To illustrate how MinDiff can be used, consider an example of a product policy classifier that is tasked with identifying and removing text comments that could be considered toxic. One challenge is to make sure that the classifier is not unfairly biased against submissions from a particular group of users, which could result in incorrect removal of content from these groups.
The academic community has laid a solid theoretical foundation for ML fairness, offering a breadth of perspectives on what unfair bias means and on the tensions between different frameworks for evaluating fairness. One of the most common metrics is equality of opportunity, which, in our example, means measuring and seeking to minimize the difference in false positive rate (FPR) across groups. In the example above, this means that the classifier should not be more likely to incorrectly remove safe comments from one group than another. Similarly, the classifier’s false negative rate should be equal between groups. That is, the classifier should not miss toxic comments against one group more than it does for another.
When the end goal is to improve products, it’s important to be able to scale unfair bias mitigation to many models. However, this poses a number of challenges:
- Sparse demographic data: The original work on equality of opportunity proposed a post-processing approach to the problem, which consisted of assigning each user group a different classifier threshold at serving time to offset biases of the model. However, in practice this is often not possible for many reasons, such as privacy policies. For example, demographics are often collected by users self-identifying and opting in, but while some users will choose to do this, others may choose to opt-out or delete data. Even for in-process solutions (i.e., methods that change how a model is trained) one needs to assume that most data will not have associated demographics, and thus needs to make efficient use of the few examples for which demographics are known.
- Ease of Use: In order for any technique to be adopted broadly, it should be easy to incorporate into existing model architectures, and not be highly sensitive to hyperparameters. While an early approach to incorporating ML fairness principles into applications utilized adversarial learning, we found that it too frequently caused models to degenerate during training, which made it difficult for product teams to iterate and made new product teams wary.
- Quality: The method for removing unfair biases should also reduce the overall classification performance (e.g., accuracy) as little as possible. Because any decrease in accuracy caused by the mitigation approach could result in the moderation model allowing more toxic comments, striking the right balance is crucial.
MinDiff Framework
We iteratively developed the MinDiff framework over the previous few years to meet these design requirements. Because demographic information is so rarely known, we utilize in-process approaches in which the model’s training objective is augmented with an objective specifically focused on removing biases. This new objective is then optimized over the small sample of data with known demographic information. To improve ease of use, we switched from adversarial training to a regularization framework, which penalizes statistical dependency between its predictions and demographic information for non-harmful examples. This encourages the model to equalize error rates across groups, e.g., classifying non-harmful examples as toxic.
There are several ways to encode this dependency between predictions and demographic information. Our initial MinDiff implementation minimized the correlation between the predictions and the demographic group, which essentially optimized for the average and variance of predictions to be equal across groups, even if the distributions still differ afterward. We have since improved MinDiff further by considering the maximum mean discrepancy (MMD) loss, which is closer to optimizing for the distribution of predictions to be independent of demographics. We have found that this approach is better able to both remove biases and maintain model accuracy.
MinDiff with MMD better closes the FPR gap with less decrease in accuracy (on an academic benchmark dataset). |
To date we have launched modeling improvements across several classifiers at Google that moderate content quality. We went through multiple iterations to develop a robust, responsible, and scalable approach, solving research challenges and enabling broad adoption.
Gaps in error rates of classifiers is an important set of unfair biases to address, but not the only one that arises in ML applications. For ML researchers and practitioners, we hope this work can further advance research toward addressing even broader classes of unfair biases and the development of approaches that can be used in practical applications. In addition, we hope that the release of the MinDiff library and the associated demos and documentation, along with the tools and experience shared here, can help practitioners improve their models and products.
Acknowledgements
This research effort on ML Fairness in classification was jointly led with Jilin Chen, Shuo Chen, Ed H. Chi, Tulsee Doshi, and Hai Qian. Further, this work was pursued in collaboration with Jonathan Bischof, Qiuwen Chen, Pierre Kreitmann, and Christine Luu. The MinDiff infrastructure was also developed in collaboration with Nick Blumm, James Chen, Thomas Greenspan, Christina Greer, Lichan Hong, Manasi Joshi, Maciej Kula, Summer Misherghi, Dan Nanas, Sean O’Keefe, Mahesh Sathiamoorthy, Catherina Xu, and Zhe Zhao. (All names are listed in alphabetical order of last names.)
Creating art for digital video games takes a high degree of artistic creativity and technical knowledge, while also requiring game artists to quickly iterate on ideas and produce a high volume of assets, often in the face of tight deadlines. What if artists had a paintbrush that acted less like a tool and more like an assistant? A machine learning model acting as such a paintbrush could reduce the amount of time necessary to create high-quality art without sacrificing artistic choices, perhaps even enhancing creativity.
Today, we present Chimera Painter, a trained machine learning (ML) model that automatically creates a fully fleshed out rendering from a user-supplied creature outline. Employed as a demo application, Chimera Painter adds features and textures to a creature outline segmented with body part labels, such as “wings” or “claws”, when the user clicks the “transform” button. Below is an example using the demo with one of the preset creature outlines.
In this post, we describe some of the challenges in creating the ML model behind Chimera Painter and demonstrate how one might use the tool for the creation of video game-ready assets.
Prototyping for a New Type of Model
In developing an ML model to produce video-game ready creature images, we created a digital card game prototype around the concept of combining creatures into new hybrids that can then battle each other. In this game, a player would begin with cards of real-world animals (e.g., an axolotl or a whale) and could make them more powerful by combining them (making the dreaded Axolotl-Whale chimera). This provided a creative environment for demonstrating an image-generating model, as the number of possible chimeras necessitated a method for quickly designing large volumes of artistic assets that could be combined naturally, while still retaining identifiable visual characteristics of the original creatures.
Since our goal was to create high-quality creature card images guided by artist input, we experimented with generative adversarial networks (GANs), informed by artist feedback, to create creature images that would be appropriate for our fantasy card game prototype. GANs pair two convolutional neural networks against each other: a generator network to create new images and a discriminator network to determine if these images are samples from the training dataset (in this case, artist-created images) or not. We used a variant called a conditional GAN, where the generator takes a separate input to guide the image generation process. Interestingly, our approach was a strict departure from other GAN efforts, which typically focus on photorealism.
To train the GANs, we created a dataset of full color images with single-species creature outlines adapted from 3D creature models. The creature outlines characterized the shape and size of each creature, and provided a segmentation map that identified individual body parts. After model training, the model was tasked with generating multi-species chimeras, based on outlines provided by artists. The best performing model was then incorporated into Chimera Painter. Below we show some sample assets generated using the model, including single-species creatures, as well as the more complex multi-species chimeras.
Generated card art integrated into the card game prototype showing basic creatures (bottom row) and chimeras from multiple creatures, including an Antlion-Porcupine, Axolotl-Whale, and a Crab-Antion-Moth (top row). More info about the game itself is detailed in this Stadia Research presentation. |
Learning to Generate Creatures with Structure
An issue with using GANs for generating creatures was the potential for loss of anatomical and spatial coherence when rendering subtle or low-contrast parts of images, despite these being of high perceptual importance to humans. Examples of this can include eyes, fingers, or even distinguishing between overlapping body parts with similar textures (see the affectionately named BoggleDog below).
GAN-generated image showing mismatched body parts. |
Generating chimeras required a new non-photographic fantasy-styled dataset with unique characteristics, such as dramatic perspective, composition, and lighting. Existing repositories of illustrations were not appropriate to use as datasets for training an ML model, because they may be subject to licensing restrictions, have conflicting styles, or simply lack the variety needed for this task.
To solve this, we developed a new artist-led, semi-automated approach for creating an ML training dataset from 3D creature models, which allowed us to work at scale and rapidly iterate as needed. In this process, artists would create or obtain a set of 3D creature models, one for each creature type needed (such as hyenas or lions). Artists then produced two sets of textures that were overlaid on the 3D model using the Unreal Engine — one with the full color texture (left image, below) and the other with flat colors for each body part (e.g., head, ears, neck, etc), called a “segmentation map” (right image, below). This second set of body part segments was given to the model at training to ensure that the GAN learned about body part-specific structure, shapes, textures, and proportions for a variety of creatures.
Example dataset training image and its paired segmentation map. |
The 3D creature models were all placed in a simple 3D scene, again using the Unreal Engine. A set of automated scripts would then take this 3D scene and interpolate between different poses, viewpoints, and zoom levels for each of the 3D creature models, creating the full color images and segmentation maps that formed the training dataset for the GAN. Using this approach, we generated 10,000+ image + segmentation map pairs per 3D creature model, saving the artists millions of hours of time compared to creating such data manually (at approximately 20 minutes per image).
Fine Tuning
The GAN had many different hyper-parameters that could be adjusted, leading to different qualities in the output images. In order to better understand which versions of the model were better than others, artists were provided samples for different creature types generated by these models and asked to cull them down to a few best examples. We gathered feedback about desired characteristics present in these examples, such as a feeling of depth, style with regard to creature textures, and realism of faces and eyes. This information was used both to train new versions of the model and, after the model had generated hundreds of thousands of creature images, to select the best image from each creature category (e.g., gazelle, lynx, gorilla, etc).
We tuned the GAN for this task by focusing on the perceptual loss. This loss function component (also used in Stadia’s Style Transfer ML) computes a difference between two images using extracted features from a separate convolutional neural network (CNN) that was previously trained on millions of photographs from the ImageNet dataset. The features are extracted from different layers of the CNN and a weight is applied to each, which affects their contribution to the final loss value. We discovered that these weights were critically important in determining what a final generated image would look like. Below are some examples from the GAN trained with different perceptual loss weights.
Dino-Bat Chimeras generated using varying perceptual loss weights. |
Some of the variation in the images above is due to the fact that the dataset includes multiple textures for each creature (for example, a reddish or grayish version of the bat). However, ignoring the coloration, many differences are directly tied to changes in perceptual loss values. In particular, we found that certain values brought out sharper facial features (e.g., bottom right vs. top right) or “smooth” versus “patterned” (top right vs. bottom left) that made generated creatures feel more real.
Here are some creatures generated from the GAN trained with different perceptual loss weights, showing off a small sample of the outputs and poses that the model can handle.
Creatures generated using different models. |
A generated chimera (Dino-Bat-Hyena, to be exact) created using the conditional GAN. Output from the GAN (left) and the post-processed / composited card (right). |
Chimera Painter
The trained GAN is now available in the Chimera Painter demo, allowing artists to work iteratively with the model, rather than drawing dozens of similar creatures from scratch. An artist can select a starting point and then adjust the shape, type, or placement of creature parts, enabling rapid exploration and for the creation of a large volume of images. The demo also allows for uploading a creature outline created in an external program, like Photoshop. Simply download one of the preset creature outlines to get the colors needed for each creature part and use this as a template for drawing one outside of Chimera Painter, and then use the “Load’ button on the demo to use this outline to flesh out your creation.
It is our hope that these GAN models and the Chimera Painter demonstration tool might inspire others to think differently about their art pipeline. What can one create when using machine learning as a paintbrush?
Acknowledgments
This project is conducted in collaboration with many people. Thanks to Ryan Poplin, Lee Dotson, Trung Le, Monica Dinculescu, Marc Destefano, Aaron Cammarata, Maggie Oh, Richard Wu, Ji Hun Kim, Erin Hoffman-John, and Colin Boswell. Thanks to everyone who pitched in to give hours of art direction, technical feedback, and drawings of fantastic creatures.
As wearables and handheld devices decrease in size, haptics become an increasingly vital channel for feedback, be it through silent alerts or a subtle “click” sensation when pressing buttons on a touch screen. Haptic feedback, ubiquitous in nearly all wearable devices and mobile phones, is commonly enabled by a linear resonant actuator (LRA), a small linear motor that leverages resonance to provide a strong haptic signal in a small package. However, the touch and pressure sensing needed to activate the haptic feedback tend to depend on additional, separate hardware which increases the price, size and complexity of the system.
In “Haptics with Input: Back-EMF in Linear Resonant Actuators to Enable Touch, Pressure and Environmental Awareness”, presented at ACM UIST 2020, we demonstrate that widely available LRAs can sense a wide range of external information, such as touch, tap and pressure, in addition to being able to relay information about contact with the skin, objects and surfaces. We achieve this with off-the-shelf LRAs by multiplexing the actuation with short pulses of custom waveforms that are designed to enable sensing using the back-EMF voltage. We demonstrate the potential of this approach to enable expressive discrete buttons and vibrotactile interfaces and show how the approach could bring rich sensing opportunities to integrated haptics modules in mobile devices, increasing sensing capabilities with fewer components. Our technique is potentially compatible with many existing LRA drivers, as they already employ back-EMF sensing for autotuning of the vibration frequency.
Different off-the-shelf LRAs that work using this technique. |
Back-EMF Principle in an LRA
Inside the LRA enclosure is a magnet attached to a small mass, both moving freely on a spring. The magnet moves in response to the excitation voltage introduced by the voice coil. The motion of the oscillating mass produces a counter-electromotive force, or back-EMF, which is a voltage proportional to the rate of change of magnetic flux. A greater oscillation speed creates a larger back-EMF voltage, while a stationary mass generates zero back-EMF voltage.
Anatomy of the LRA. |
Active Back-EMF for Sensing
Touching or making contact with the LRA during vibration changes the velocity of the interior mass, as energy is dissipated into the contact object. This works well with soft materials that deform under pressure, such as the human body. A finger, for example, absorbs different amounts of energy depending on the contact force as it flattens against the LRA. By driving the LRA with small amounts of energy, we can measure this phenomenon using the back-EMF voltage. Because leveraging the back-EMF behavior for sensing is an active process, the key insight that enabled this work was the design of a custom, off-resonance driver waveform that allows continuous sensing while minimizing vibrations, sound and power consumption.
Touch and pressure sensing on the LRA. |
We measure back-EMF from the floating voltage between the two LRA leads, which requires disconnecting the motor driver briefly to avoid disturbances. While the driver is disconnected, the mass is still oscillating inside the LRA, producing an oscillating back-EMF voltage. Because commercial back-EMF sensing LRA drivers do not provide the raw data, we designed a custom circuit that is able to pick up and amplify small back-EMF voltage. We also generated custom drive pulses that minimize vibrations and energy consumption.
Simplified schematic of the LRA driver and the back-EMF measurement circuit for active sensing. |
Applications
The behavior of the LRAs used in mobile phones is the same, whether they are on a table, on a soft surface, or hand held. This may cause problems, as a vibrating phone could slide off a glass table or emit loud and unnecessary vibrating sounds. Ideally, the LRA on a phone would automatically adjust based on its environment. We demonstrate our approach for sensing using the LRA back-EMF technique by wiring directly to a Pixel 4’s LRA, and then classifying whether the phone is held in hand, placed on a soft surface (foam), or placed on a table.
Sensing phone surroundings. |
We also present a prototype that demonstrates how LRAs could be used as combined input/output devices in portable electronics. We attached two LRAs, one on the left and one on the right side of a phone. The buttons provide tap, touch, and pressure sensing. They are also programmed to provide haptic feedback, once the touch is detected.
Pressure-sensitive side buttons. |
There are a number of wearable tactile aid devices, such as sleeves, vests, and bracelets. To transmit tactile feedback to the skin with consistent force, the tactor has to apply the right pressure; it can not be too loose or too tight. Currently, the typical way to do so is through manual adjustment, which can be inconsistent and lacks measurable feedback. We show how the LRA back-EMF technique can be used to continuously monitor the fit bracelet device and prompt the user if it’s too tight, too loose, or just right.
Fit sensing bracelet. |
Evaluating an LRA as a Sensor
The LRA works well as a pressure sensor, because it has a quadratic response to the force magnitude during touch. Our method works for all five off-the-shelf LRA types that we evaluated. Because the typical power consumption is only 4.27 mA, all-day sensing would only reduce the battery life of a Pixel 4 phone from 25 to 24 hours. The power consumption can be greatly reduced by using low-power amplifiers and employing active sensing only when needed, such as when the phone is active and interacting with the user.
Back-EMF voltage changes when pressure is applied with a finger. |
The challenge with active sensing is to minimize vibrations, so they are not perceptible when touching and do not produce audible sound. We optimize the active sensing to produce only 2 dB of sound and 0.45 m/s2 peak-to-peak acceleration, which is just barely perceptible by finger and is quiet, in contrast to the regular 8.49 m/s2 .
Future Work and Conclusion
To see the work presented here in action, please see the video below.
In the future, we plan to explore other sensing techniques, perhaps measuring the current could be an alternative approach. Also, using machine learning could potentially improve the sensing and provide more accurate classification of the complex back-EMF patterns. Our method could be developed further to enable closed-loop feedback with the actuator and sensor, which would allow the actuator to provide the same force, regardless of external conditions.
We believe that this work opens up new opportunities for leveraging existing ubiquitous hardware to provide rich interactions and closed-loop feedback haptic actuators.
Acknowledgments
This work was done by Artem Dementyev, Alex Olwal, and Richard Lyon. Thanks to Mathieu Le Goc and Thad Starner for feedback on the paper.
As natural language processing (NLP) models become more powerful and are deployed in more real-world contexts, understanding their behavior is becoming increasingly critical. While advances in modeling have brought unprecedented performance on many NLP tasks, many research questions remain about not only the behavior of these models under domain shift and adversarial settings, but also their tendencies to behave according to social biases or shallow heuristics.
For any new model, one might want to know in which cases a model performs poorly, why a model makes a particular prediction, or whether a model will behave consistently under varying inputs, such as changes to textual style or pronoun gender. But, despite the recent explosion of work on model understanding and evaluation, there is no “silver bullet” for analysis. Practitioners must often experiment with many techniques, looking at local explanations, aggregate metrics, and counterfactual variations of the input to build a better understanding of model behavior, with each of these techniques often requiring its own software package or bespoke tool. Our previously released What-If Tool was built to address this challenge by enabling black-box probing of classification and regression models, thus enabling researchers to more easily debug performance and analyze the fairness of machine learning models through interaction and visualization. But there was still a need for a toolkit that would address challenges specific to NLP models.
With these challenges in mind, we built and open-sourced the Language Interpretability Tool (LIT), an interactive platform for NLP model understanding. LIT builds upon the lessons learned from the What-If Tool with greatly expanded capabilities, which cover a wide range of NLP tasks including sequence generation, span labeling, classification and regression, along with customizable and extensible visualizations and model analysis.
LIT supports local explanations, including salience maps, attention, and rich visualizations of model predictions, as well as aggregate analysis including metrics, embedding spaces, and flexible slicing. It allows users to easily hop between visualizations to test local hypotheses and validate them over a dataset. LIT provides support for counterfactual generation, in which new data points can be added on the fly, and their effect on the model visualized immediately. Side-by-side comparison allows for two models, or two individual data points, to be visualized simultaneously. More details about LIT can be found in our system demonstration paper, which was presented at EMNLP 2020.
Exploring a sentiment classifier with LIT. |
Customizability
In order to better address the broad range of users with different interests and priorities that we hope will use LIT, we’ve built the tool to be easily customizable and extensible from the start. Using LIT on a particular NLP model and dataset only requires writing a small bit of Python code. Custom components, such as task-specific metrics calculations or counterfactual generators, can be written in Python and added to a LIT instance through our provided APIs. Also, the front end itself can be customized, with new modules that integrate directly into the UI. For more on extending the tool, check out our documentation on GitHub.
Demos
To illustrate some of the capabilities of LIT, we have created a few demos using pre-trained models. The full list is available on the LIT website, and we describe two of them here:
- Sentiment analysis: In this example, a user can explore a BERT-based binary classifier that predicts if a sentence has positive or negative sentiment. The demo uses the Stanford Sentiment Treebank of sentences from movie reviews to demonstrate model behavior. One can examine local explanations using saliency maps provided by a variety of techniques (such as LIME and integrated gradients), and can test model behavior with perturbed (counterfactual) examples using techniques such as back-translation, word replacement, or adversarial attacks. These techniques can help pinpoint under what scenarios a model fails, and whether those failures are generalizable, which can then be used to inform how best to improve a model.
Analyzing token-based salience of an incorrect prediction. The word “laughable” seems to be incorrectly raising the positive sentiment score of this example. - Masked word prediction: Masked language modeling is a “fill-in-the-blank” task, where the model predicts different words that could complete a sentence. For example, given the prompt, “I took my ___ for a walk”, the model might predict a high score for “dog.” In LIT one can explore this interactively by typing in sentences or choosing from a pre-loaded corpus, and then clicking specific tokens to see what a model like BERT understands about language, or about the world.
Interactively selecting a token to mask, and viewing a language model’s predictions.
LIT in Practice and Future Work
Although LIT is a new tool, we have already seen the value that it can provide for model understanding. Its visualizations can be used to find patterns in model behavior, such as outlying clusters in embedding space, or words with outsized importance to the predictions. Exploration in LIT can test for potential biases in models, as demonstrated in our case study of LIT exploring gender bias in a coreference model. This type of analysis can inform next steps in improving model performance, such as applying MinDiff to mitigate systemic bias. It can also be used as an easy and fast way to create an interactive demo for any NLP model.
Check out the tool either through our provided demos, or by bringing up a LIT server for your own models and datasets. The work on LIT has just started, and there are a number of new capabilities and refinements planned, including the addition of new interpretability techniques from cutting edge ML and NLP research. If there are other techniques that you’d like to see added to the tool, please let us know! Join our mailing list to stay up to date as LIT evolves. And as the code is open-source, we welcome feedback on and contributions to the tool.
Acknowledgments
LIT is a collaborative effort between the Google Research PAIR and Language teams. This post represents the work of the many contributors across Google, including Andy Coenen, Ann Yuan, Carey Radebaugh, Ellen Jiang, Emily Reif, Jasmijn Bastings, Kristen Olson, Leslie Lai, Mahima Pushkarna, Sebastian Gehrmann, and Tolga Bolukbasi. We would like to thank all those who contributed to the project, both inside and outside Google, and the teams that have piloted its use and provided valuable feedback.
Last year we launched Recorder, a new kind of recording app that made audio recording smarter and more useful by leveraging on-device machine learning (ML) to transcribe the recording, highlight audio events, and suggest appropriate tags for titles. Recorder makes editing, sharing and searching through transcripts easier. Yet because Recorder can transcribe very long recordings (up to 18 hours!), it can still be difficult for users to find specific sections, necessitating a new solution to quickly navigate such long transcripts.
To increase the navigability of content, we introduce Smart Scrolling, a new ML-based feature in Recorder that automatically marks important sections in the transcript, chooses the most representative keywords from each section, and then surfaces those keywords on the vertical scrollbar, like chapter headings. The user can then scroll through the keywords or tap on them to quickly navigate to the sections of interest. The models used are lightweight enough to be executed on-device without the need to upload the transcript, thus preserving user privacy.
Smart Scrolling feature UX |
Under the Hood
The Smart Scrolling feature is composed of two distinct tasks. The first extracts representative keywords from each section and the second picks which sections in the text are the most informative and unique.
For each task, we utilize two different natural language processing (NLP) approaches: a distilled bidirectional transformer (BERT) model pre-trained on data sourced from a Wikipedia dataset, alongside a modified extractive term frequency–inverse document frequency (TF-IDF) model. By using the bidirectional transformer and the TF-IDF-based models in parallel for both the keyword extraction and important section identification tasks, alongside aggregation heuristics, we were able to harness the advantages of each approach and mitigate their respective drawbacks (more on this in the next section).
The bidirectional transformer is a neural network architecture that employs a self-attention mechanism to achieve context-aware processing of the input text in a non-sequential fashion. This enables parallel processing of the input text to identify contextual clues both before and after a given position in the transcript.
Bidirectional Transformer-based model architecture |
The extractive TF-IDF approach rates terms based on their frequency in the text compared to their inverse frequency in the trained dataset, and enables the finding of unique representative terms in the text.
Both models were trained on publicly available conversational datasets that were labeled and evaluated by independent raters. The conversational datasets were from the same domains as the expected product use cases, focusing on meetings, lectures, and interviews, thus ensuring the same word frequency distribution (Zipf’s law).
Extracting Representative Keywords
The TF-IDF-based model detects informative keywords by giving each word a score, which corresponds to how representative this keyword is within the text. The model does so, much like a standard TF-IDF model, by utilizing the ratio of the number of occurrences of a given word in the text compared to the whole of the conversational data set, but it also takes into account the specificity of the term, i.e., how broad or specific it is. Furthermore, the model then aggregates these features into a score using a pre-trained function curve. In parallel, the bidirectional transformer model, which was fine tuned on the task of extracting keywords, provides a deep semantic understanding of the text, enabling it to extract precise context-aware keywords.
The TF-IDF approach is conservative in the sense that it is prone to finding uncommon keywords in the text (high bias), while the drawback for the bidirectional transformer model is the high variance of the possible keywords that can be extracted. But when used together, these two models complement each other, forming a balanced bias-variance tradeoff.
Once the keyword scores are retrieved from both models, we normalize and combine them by utilizing NLP heuristics (e.g., the weighted average), removing duplicates across sections, and eliminating stop words and verbs. The output of this process is an ordered list of suggested keywords for each of the sections.
Rating a Section’s Importance
The next task is to determine which sections should be highlighted as informative and unique. To solve this task, we again combine the two models mentioned above, which yield two distinct importance scores for each of the sections. We compute the first score by taking the TF-IDF scores of all the keywords in the section and weighting them by their respective number of appearances in the section, followed by a summation of these individual keyword scores. We compute the second score by running the section text through the bidirectional transformer model, which was also trained on the sections rating task. The scores from both models are normalized and then combined to yield the section score.
Smart Scrolling pipeline architecture |
Some Challenges
A significant challenge in the development of Smart Scrolling was how to identify whether a section or keyword is important – what is of great importance to one person can be of less importance to another. The key was to highlight sections only when it is possible to extract helpful keywords from them.
To do this, we configured the solution to select the top scored sections that also have highly rated keywords, with the number of sections highlighted proportional to the length of the recording. In the context of the Smart Scrolling features, a keyword was more highly rated if it better represented the unique information of the section.
To train the model to understand this criteria, we needed to prepare a labeled training dataset tailored to this task. In collaboration with a team of skilled raters, we applied this labeling objective to a small batch of examples to establish an initial dataset in order to evaluate the quality of the labels and instruct the raters in cases where there were deviations from what was intended. Once the labeling process was complete we reviewed the labeled data manually and made corrections to the labels as necessary to align them with our definition of importance.
Using this limited labeled dataset, we ran automated model evaluations to establish initial metrics on model quality, which were used as a less-accurate proxy to the model quality, enabling us to quickly assess the model performance and apply changes in the architecture and heuristics. Once the solution metrics were satisfactory, we utilized a more accurate manual evaluation process over a closed set of carefully chosen examples that represented expected Recorder use cases. Using these examples, we tweaked the model heuristics parameters to reach the desired level of performance using a reliable model quality evaluation.
Runtime Improvements
After the initial release of Recorder, we conducted a series of user studies to learn how to improve the usability and performance of the Smart Scrolling feature. We found that many users expect the navigational keywords and highlighted sections to be available as soon as the recording is finished. Because the computation pipeline described above can take a considerable amount of time to compute on long recordings, we devised a partial processing solution that amortizes this computation over the whole duration of the recording. During recording, each section is processed as soon as it is captured, and then the intermediate results are stored in memory. When the recording is done, Recorder aggregates the intermediate results.
When running on a Pixel 5, this approach reduced the average processing time of an hour long recording (~9K words) from 1 minute 40 seconds to only 9 seconds, while outputting the same results.
Summary
The goal of Recorder is to improve users’ ability to access their recorded content and navigate it with ease. We have already made substantial progress in this direction with the existing ML features that automatically suggest title words for recordings and enable users to search recordings for sounds and text. Smart Scrolling provides additional text navigation abilities that will further improve the utility of Recorder, enabling users to rapidly surface sections of interest, even for long recordings.
Acknowledgments
Bin Zhang, Sherry Lin, Isaac Blankensmith, Henry Liu, Vincent Peng, Guilherme Santos, Tiago Camolesi, Yitong Lin, James Lemieux, Thomas Hall, Kelly Tsai, Benny Schlesinger, Dror Ayalon, Amit Pitaru, Kelsie Van Deman, Console Chen, Allen Su, Cecile Basnage, Chorong Johnston, Shenaz Zack, Mike Tsao, Brian Chen, Abhinav Rastogi, Tracy Wu, Yvonne Yang.