Categories
Offsites

Google at NeurIPS 2022

This week marks the beginning of the 36th annual Conference on Neural Information Processing Systems (NeurIPS 2022), the biggest machine learning conference of the year, which is being held in New Orleans, LA. NeurIPS 2022 will be held in person with additional options for virtual attendees, and includes invited talks, demonstrations and presentations of some of the latest in machine learning research. This year, NeurIPS is also offering a new track, called Spotlight Papers, which will provide opportunities to highlight papers presented in prestigious journals that would otherwise not have been eligible for submission.

Google is proud to be a Diamond level sponsor of NeurIPS this year and will have a significant presence year with more than 175 accepted papers, additionally contributing to and learning from the broader academic research community through numerous talks, posters, workshops, and tutorials. You can learn more about our work being presented in the list below (Google affiliations highlighted in bold).

Organizing Committee

General Chairs includes: Sanmi Koyejo

Program Chairs include: Alekh Agarwal

Workshop Chairs include: Hanie Sedghi

Tutorial Chairs include: Adji Bousso Dieng, Jessica Schrouff

Affinity Workshop Chair: Adji Bousso Dieng, Jessica Schrouff

Program Committee, Senior Area Chairs include: Corinna Cortes, Claudio Gentile, Mohammad Ghavamzadeh, Amir Globerson, Elad Hazan, Katherine Heller, Satyen Kale, Been Kim, Sanjiv Kumar, Hugo Larochelle, Sergey Levine, Yishay Mansour, Mehryar Mohri, Tara Sainath, Dale Schuurmans, Daniel Tarlow

NeurIPS Foundation Board Secretary: Michael Mozer

NeurIPS Foundation Board Members include: Corinna Cortes, Isabelle Guyon, Sanmi Koyejo, Hugo Larochelle

NeurIPS Foundation Advisory Board include: Peter Bartlett, Zoubin Ghahramani, John C. Platt, Fernando Pereira, Dale Schuurmans

Keynote Speakers

The Data-Centric Era: How ML is Becoming an Experimental Science
Isabelle Guyon

The Forward-Forward Algorithm for Training Deep Neural Networks
Geoffrey Hinton

Outstanding Paper Award

Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding
Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho, David J Fleet, Mohammad Norouzi

EXPO Day Workshops

Graph Neural Networks in Tensorflow: A Practical Guide
Workshop Organizers include: Bryan Perozzi, Sami Abu-el-Haija

A Hands-On Introduction to Tensorflow and Jax
Workshop Organizers include: Josh Gordon

Affinity Workshops

LatinX in AI (LXAI)
Platinum Sponsor
Networking & Social Chairs include: Andres Muñoz Medina
Program Committee includes: Johan Obando Ceron

Queer in AI
Panelists include: Sara Beery, Talia Ringer

Women in Machine Learning (WiML)
Platinum Sponsor
Workshop Organizers and Mentorship Chairs include: Beliz Gunel
Mentors include: Adam Roberts, Eleni Triantafillou, Zelda Mariet, Clara Hu, Rosanne Liu, Alekh Agarwal, Vinod Prabhakaran, Rose Yu, Katherine Heller

Workshops

New in ML
Workshop Organizers include: Isabelle Guyon

AI for Accelerated Materials Design (AI4Mat)
Workshop Organizers include: Benjamin Sanchez-Lengeling

All Things Attention: Bridging Different Perspectives on Attention
Invited Speakers and Panelists include: Vidhya Navalpakkam

Efficient Natural Language and Speech Processing (ENLSP-II): The Future of Pre-trained Models
Invited Speakers include: Tara Sainath, Anna Huang
Invited Panelists include: Mohammad Norouzi
Program Committee includes: Wenhu Chen

Federated Learning: Recent Advances and New Challenges
Program Committee includes: Kallista Bonawitz, Zachary Charles, Wenshuo Guo, Peter Kairouz, Zhaozhuo Xu, Zheng Xu

Gaussian Processes, Spatiotemporal Modeling, and Decision-Making Systems
Workshop Organizers include: Zi Wang
Invited Speakers include: Jasper Snoek, Carolina Osorio
Advisory Board includes: Zoubin Ghahramani

Has it Trained Yet? A Workshop for Algorithmic Efficiency in Practical Neural Network Training
Workshop Organizers include: Zachary Nado, George Dahl, Naman Agarwal, Aakanksha Chowdhery
Invited Speakers include: Aakanksha Chowdhery, Priya Goyal

Human in the Loop Learning (HiLL)
Workshop Organizers include: Fisher Yu, Vittorio Ferrari
Invited Speakers include: Dorsa Singh, Igor Mordatch, Ding Zhao

INTERPOLATE — First Workshop on Interpolation Regularizers and Beyond
Workshop Organizers include: Yann Dauphin
Invited Speakers include: Chelsea Finn
Panelists include: Chelsea Finn, Dustin Tran
Program Committee includes: Wang Chen, Kimin Lee

LaReL: Language and Reinforcement Learning
Invited Speakers include: Dorsa Singh, Igor Mordatch

Medical Imaging Meets NeurIPS
Program Committee includes: Chenyu You

Memory in Artificial and Real Intelligence (MemARI)
Program Committee includes: Benjamin Eysenbach, Otilia Stretcu

Meta-Learning
Workshop Organizers include: Eleni Triantafillou
Invited Speakers include: Lucas Byer, Chelsea Finn
Program Committee includes: Ishita Dasgupta, Praneet Dutta, Benjamin Eysenbach, Maximilian Igl, Louis Kirsch, Parsa Mahmoudieh, Marc Pickett, Eleni Triantafillou

New Frontiers in Graph Learning (GLFrontiers)
Workshop Organizers include: Hanjun Dai

Offline Reinforcement Learning Workshop: Offline RL as a “Launchpad”
Workshop Organizers include: Rishabh Agarwal, Aviral Kumar, George Tucker
Invited Speakers include: Dorsa Sadigh

Score-Based Methods
Invited Speakers include: Mohammad Norouzi
Invited Panelists include: Jascha Sohl-Dickstein

Synthetic Data for Empowering ML Research
Invited Speakers include: Mehryar Mohri
Invited Panelists include: Katrina Ligett
Program Committee includes: Jinsung Yoon

Table Representation Learning
Workshop Organizers include: Pengcheng Yin
Invited Speakers include: Xinyun Chen, Carsten Binnig
Panelists include: Julian Eisenschlos
Program Committee includes: Wenhu Chen, Xinyun Chen, Beliz Gunel

A Causal View on Dynamical Systems
Program Committee includes: Rose Yu

Algorithmic Fairness Through the Lens of Causality and Privacy
Workshop Organizers include: Awa Dieng
Invited Speakers include: Nicolas Papernot
Roundtable Leads include: David Madras, Negar Rostamzadeh, Nyalleng Moroosi
Program Committee includes: Matt Kusner

Broadening Research Collaborations in ML
Workshop Organizers include: Rosanne Liu, Pablo Samuel Castro, Sunipa Dev

Decentralization and Trustworthy Machine Learning in Web3: Methodologies, Platforms, and Applications
Invited Speakers include: Peter Kairouz

Distribution Shifts (DistShift): Connecting Methods and Applications
Workshop Organizers include: Becca Roelofs, Chelsea Finn, Jacob Eisenstein, Pang Wei Koh
Invited Speakers include: Sarah Beery

Foundation Models for Decision Making
Workshop Organizers include: Sherry Yang, Yilun Du, Igor Mordatch, Shixiang Shane Gu,Ofir Nachum
Invited Speakers include: Dorsa Sadigh, Dale Schuurmans, Machel Reid
Program Committee includes: Bo Dai, Aleksandra Faust, Hiroki Furuta, Kati Goshvadi, Izzeddin Gur, Austin Huang, Kimin Lee, Kuang-Huei Lee, Lisa Lee, Yingjie Miao, Jordi Orbay, Ted Xiao

Gaze Meets ML
Program Committee includes: Peter Mattson, Mehdi Moradi

I Can’t Believe It’s Not Better: Understanding Deep Learning Through Empirical Falsification
Workshop Organizers include: Javier Antorán
Panelists include: Kevin Murphy

Interactive Learning for Natural Language Processing
Invited Speakers include: Anca Dragan
Program Committees include: Julia Kreutzer, Shunyu Yao

Machine Learning and the Physical Sciences
Workshop Organizers include: Adji Bousso Dieng
Invited Speakers include: Ekin Doğuş Çubuk

Machine Learning for Systems
Workshop Organizers include: Martin Maas, Azade Nova, Dan Zhang
Invited Speakers include: Jeff Dean
Program Committee includes: Milad Hashemi, Kevin Swersky

Machine Learning in Structural Biology
Invited Speakers include: David Fleet

MATH-AI: Toward Human-Level Mathematical Reasoning
Workshop Organizers include: Swaroop Mishra, Yuhuai Wu
Invited Speakers include: Talia Ringer

OPT 2022: Optimization for Machine Learning
Workshop Organizers include: Courtney Paquette

Reinforcement Learning for Real Life (RL4RealLife)
Workshop Organizers include: Minmin Chen
Invited Panelists include: Pablo Samuel Castro
Program Committee includes: Victor Carbune, Bo Chang, Yinlam Chow, Konstantina Christakopoulou, Bo Dai, Hanjun Dai, Aleksandra Faust, Joshua Greaves‎, Chih-wei Hsu, Rahul Kidambi, Srivatsan Krishnan, Iou-Jen Liu, Cong Lu, Jincheng Mei, Chao Qin

Self-Supervised Learning – Theory and Practice
Invited Speakers include: Mathilde Caron

Symmetry and Geometry in Neural Representations (NeurReps)
Invited Speakers include: Noah Shutty
Program Committee includes: Ondrej Biza, Noah Shutty

Temporal Graph Learning Workshop
Invited Speakers include: Mehran Kazemi

Transfer Learning for Natural Language Processing
Workshop Organizers include: Deepak Ramachandran, Sebastian Ruder
Invited Speakers include: Jonas Pfeiffer
Invited Debaters include: Ellie Pavlick
Program Committee includes: Patrick Fernandes, Jonas Pfeiffer, Jiao Sun, Tu Vu, Xinyi Wang, Xin Xu

Cultures of AI and AI for Culture
Workshop Organizers include: Rida Qadri, Fernando Diaz

Deep Reinforcement Learning Workshop
Workshop Organizers include: Karol Hausman, Ted Xiao, Zeyu Zheng
Invited Speakers include: Igor Mordatch
Advisory Board includes: Chelsea Finn

Empowering Communities: A Participatory Approach to AI for Mental Health
Program Committee includes: Diana Mincu, Subhrajit Roy, Martin Seneviratne

HCAI@NeurIPS 2022, Human Centered AI
Keynote Speaker includes: Fernanda Viegas

Learning Meaningful Representations of Life
Workshop Organizers include: Adji Bousso Dieng

Machine Learning for Creativity and Design
Workshop Organizers include: Yingtao Tian

Machine Learning Safety
Workshop Organizers include: Nicholas Carlini
Invited Speakers include: Dorsa Sadigh

Neuro Causal and Symbolic AI (nCSI)
Workshop Organizers include: Thomas Kipf

Robot Learning Workshop: Trustworthy Robotics
Workshop Organizers include: Alex Bewley, Jonathan Tompson
Invited Speakers include: Karol Hausman, Brian Ichter, Been Kim, Leila Takayama, Andy Zeng
Program Committee includes: Vincent Vanhoucke

The Symbiosis of Deep Learning and Differential Equations II
Workshop Organizers include: Winnie Xu
Invited Speakers include: Rose Yu

Tackling Climate Change with Machine Learning
Workshop Organizers include: Emma Strubell

Trustworthy and Socially Responsible Machine Learning
Invited Speakers include: Been Kim, Dorsa Sadigh, Milind Tambe

Vision Transformers: Theory and Applications
Invited Speakers include: Cordelia Schmid, Ming Hsuan Yang

Tutorials

Advances in Bayesian Optimization
Tutorial Organizers include: Virginia Aglietti

Creative Culture and Machine Learning
Tutorial Organizers include: Negar Rostamzadeh

Fair and Socially Responsible ML for Recommendations: Challenges and Perspectives
Invited Panelists include: Fernando Diaz

Lifelong Learning Machines
Invited Panelists include: Christopher Summerfield

The Role of Meta-learning for Few-Shot Learning
Tutorial Organizers include: Eleni Triantafillou
Invited Panelists include: Neil Houlsby, Priyanka Agrawal

Competitions

NeurIPS 2022 Competition Track: Overview & Results
Invited Speakers include: Isabelle Guyon

Causal Insights for Learning Paths in Education
Competition Organizers include: Zichao (Jack) Wang

IGLU: Interactive Grounded Language Understanding in a Collaborative Environment
Competition Organizers include: Negar Arabzadeh

Cross-Domain MetaDL: Any-Way Any-Shot Learning Competition with Novel Datasets from Practical Domains
Competition Organizers include: Isabelle Guyon

Reconnaissance Blind Chess: An Unsolved Challenge for Multi-Agent Decision Making Under Uncertainty
Competition Organizers include: Bo Li

VisDA 2022 Challenge: Sim2Real Domain Adaptation for Industrial Recycling
Competition Organizers include: Dina Bashkirova

Spotlight Papers

CoPur: Certifiably Robust Collaborative Inference via Feature Purification
Jing Liu, Chulin Xie, Oluwasanmi O Koyejo, Bo Li

Machine Learning on Graphs: A Model and Comprehensive Taxonomy
Ines Chami*, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, Kevin Murphy

Sparse Winning Tickets are Data-Efficient Image Recognizers
Mukund Varma T, Xuxi Chen, Zhenyu Zhang, Tianlong Chen, Subhashini Venugopalan, Zhangyang Wang

Federated Learning from Pre-trained Models: A Contrastive Learning Approach
Yue Tan, Guodong Long, Jie Ma, Lu Liu, Tianyi Zhou, Jing Jiang

Improving Multi-task Generalization via Regularizing Spurious Correlation
Ziniu Hu*, Zhe Zhao, Xinyang Yi, Tiansheng Yao, Lichan Hong, Yizhou Sun, Ed H. Chi

The Nature of Temporal Difference Errors in Multi-step Distributional Reinforcement Learning
Yunhao Tang, Mark Rowland, Rémi Munos, Bernardo Ávila Pires, Will Dabney, Marc G. Bellemare

Residual Multiplicative Filter Networks for Multiscale Reconstruction
Shayan Shekarforoush, David B. Lindell, David J. Fleet, Marcus A Brubaker

Differentially Private Learning with Margin Guarantees
Raef Bassily, Mehryar Mohri, Ananda Theertha Suresh

Optimal Query Complexities for Dynamic Trace Estimation
David P. Woodruff*, Fred Zhang*, Qiuyi Zhang

Papers

From Gradient Flow on Population Loss to Learning with Stochastic Gradient Descent
Ayush Sekhari, Satyen Kale, Jason D. Lee, Chris De Sa, Karthik Sridharan

On the Global Convergence Rates of Decentralized Softmax Gradient Play in Markov Potential Games
Runyu Zhang, Jincheng Mei, Bo Dai, Dale Schuurmans, Na Li

Matryoshka Representation Learning
Aditya Kusupati, Gantavya Bhatt, Aniket Rege, Matthew Wallingford, Aditya Sinha, Vivek Ramanujan, William Howard-Snyder, Kaifeng Chen, Sham Kakade, Prateek Jain, Ali Farhadi

Efficient Risk-Averse Reinforcement Learning
Ido Greenberg, Yinlam Chow, Mohammad Ghavamzadeh, Shie Mannor

Operator Splitting Value Iteration
Amin Rakhsha, Andrew Wang, Mohammad Ghavamzadeh, Amir-massoud Farahmand

Cluster Randomized Designs for One-Sided Bipartite Experiments
Jennifer Brennan*, Vahab Mirrokni, Jean Pouget-Abadie

A Unified Sequence Interface for Vision Tasks
Ting Chen, Saurabh Saxena, Lala Li, Tsung-Yi Lin*, David J. Fleet, Geoffrey Hinton

Cryptographic Hardness of Learning Halfspaces with Massart Noise
Ilias Diakonikolas, Daniel M. Kane, Pasin Manurangsi, Lisheng Ren

Better Best of Both Worlds Bounds for Bandits with Switching Costs
Idan Amir, Guy Azov, Tomer Koren, Roi Livni

Fast Neural Kernel Embeddings for General Activations
Insu Han, Amir Zandieh, Jaehoon Lee, Roman Novak, Lechao Xiao, Amin Karbasi

Hierarchical Agglomerative Graph Clustering in Poly-Logarithmic Depth
Laxman Dhulipala, David Eisenstat, Jakub Łącki, Vahab Mirronki, Jessica Shi

Improving Zero-Shot Generalization in Offline Reinforcement Learning Using Generalized Similarity Functions
Bogdan Mazoure*, Ilya Kostrikov, Ofir Nachum, Jonathan Tompson

Indicators of Attack Failure: Debugging and Improving Optimization of Adversarial Examples
Maura Pintor, Luca Demetrio, Angelo Sotgiu, Ambra Demontis, Nicholas Carlini, Battista Biggio, Fabio Roli

Learning Energy Networks with Generalized Fenchel-Young Losses
Mathieu Blondel, Felipe Llinares-López, Robert Dadashi, Léonard Hussenot, Matthieu Geist

Learning Robust Dynamics Through Variational Sparse Gating
Arnav Kumar Jain, Shiva Kanth Sujit, Shruti Joshi, Vincent Michalski, Danijar Hafner, Samira Ebrahimi Kahou

Learning to Reason with Neural Networks: Generalization, Unseen Data and Boolean Measures
Arnav Kumar Jain, Shiva Kanth Sujit, Shruti Joshi, Vincent Michalski, Danijar Hafner, Samira Ebrahimi Kahou

So3krates: Equivariant Attention for Interactions on Arbitrary Length-Scales in Molecular Systems
J. Thorben Frank, Oliver T. Unke, Klaus-Robert Müller

Spectral Bias in Practice: The Role of Function Frequency in Generalization
Sara Fridovich-Keil*, Raphael Gontijo-Lopes, Rebecca Roelofs

Delving into Out-of-Distribution Detection with Vision-Language Representations
Yifei Ming, Ziyang Cai, Jiuxiang Gu, Yiyou Sun, Wei Li, Yixuan Li

Path Independent Equilibrium Models Can Better Exploit Test-Time Computation
Cem Anil, Ashwini Pokle, Kaiqu Liang, Johannes Treutlein, Yuhuai Wu, Shaojie Bai, J. Zico Kolter, Roger Grosse

On Optimal Learning Under Targeted Data Poisoning
Steve Hanneke, Amin Karbasi, Mohammad Mahmoody, Idan Mehalel, Shay Moran

Learning With Little Mixing
Ingvar Ziemann, Stephen Tu

Block-Recurrent Transformers
DeLesley Hutchins, Imanol Schlag*, Yuhuai Wu, Ethan Dyer, Behnam Neyshabur

TabNAS: Rejection Sampling for Neural Architecture Search on Tabular Datasets
Chengrun Yang, Gabriel Bender, Hanxiao Liu, Pieter-Jan Kindermans, Madeleine Udell, Yifeng Lu, Quoc Le, Da Huang

Regret Bounds for Multilabel Classification in Sparse Label Regimes
Robert Busa-Fekete, Heejin Choi, Krzysztof Dembczynski, Claudio Gentile, Henry William Reeve, Balazs Szorenyi

Robust Reinforcement Learning Using Offline Data
Kishan Panaganti, Zaiyan Xu, Dileep Kalathil, Mohammad Ghavamzadeh

Contrastive Learning as Goal-Conditioned Reinforcement Learning
Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, Ruslan Salakhutdinov

Beyond Rewards: A Hierarchical Perspective on Offline Multiagent Behavioral Analysis
Shayegan Omidshafiei, Andrei Kapishnikov, Yannick Assogba, Lucas Dixon, Been Kim

Revisiting Neural Scaling Laws in Language and Vision
Ibrahim Alabdulmohsin, Behnam Neyshabur, Xiaohua Zhai

Polynomial Neural Fields for Subband Decomposition and Manipulation
Guandao Yang*, Sagie Benaim, Varun Jampani, Kyle Genova, Jonathan T. Barron, Thomas Funkhouser, Bharath Hariharan, Serge Belongie

First Is Better Than Last for Language Data Influence
Chih-Kuan Yeh, Ankur Taly, Mukund Sundararajan, Frederick Liu, Pradeep Ravikumar

The Privacy Onion Effect: Memorization Is Relative
Nicholas Carlini, Matthew Jagielski, Chiyuan Zhang, Nicolas Papernot, Andreas Terzis, Florian Tramer

Deep Hierarchical Planning from Pixels (see blog post)
Danijar Hafner, Kuang-Huei Lee, Ian Fischer, Pieter Abbeel

Discovered Policy Optimisation
Chris Lu, Jakub Grudzien Kuba, Alistair Letcher, Luke Metz, Christian Schroeder de Witt, Jakob Foerster

Semi-supervised Active Linear Regression
Fnu Devvrit, Nived Rajaraman, Pranjal Awasthi

Pruning’s Effect on Generalization Through the Lens of Training and Regularization
Tian Jin, Daniel M. Roy, Michael Carbin, Jonathan Frankle, Gintare Karolina Dziugaite

Exploring Length Generalization in Large Language Models
Cem Anil*, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh, Ambrose Slone, Guy Gur-Ari, Ethan Dyer, Behnam Neyshabur

Fast Stochastic Composite Minimization and an Accelerated Frank-Wolfe Algorithm Under Parallelization
Benjamin Dubois-Taine, Francis Bach, Quentin Berthet, Adrien Taylor

Global Normalization for Streaming Speech Recognition in a Modular Framework
Ehsan Variani, Ke Wu, Michael Riley, David Rybach, Matt Shannon, Cyril Allauzen

Learning Predictions for Algorithms with Predictions
Mikhail Khodak, Maria-Florina Balcan, Ameet Talwalkar, Sergei Vassilvitskii

Multimodal Contrastive Learning with LIMoE: the Language-Image Mixture of Experts (see blog post)
Basil Mustafa, Carlos Riquelme, Joan Puigcerver, Rodolphe Jenatton, Neil Houlsby

Incrementality Bidding via Reinforcement Learning Under Mixed and Delayed Rewards
Ashwinkumar Badanidiyuru, Zhe Feng, Tianxi Li, Haifeng Xu*

Solving Quantitative Reasoning Problems with Language Models (see blog post)
Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, Vedant Misra

Anonymized Histograms in Intermediate Privacy Models
Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi

Efficient and Stable Fully Dynamic Facility Location
Sayan Bhattacharya, Nikos Parotsidis, Silvio Lattanzi

Are All Losses Created Equal: A Neural Collapse Perspective
Jinxin Zhou, Chong You, Xiao Li, Kangning Liu, Sheng Liu, Qing Qu, Zhihui Zhu

Universal Rates for Interactive Learning
Steve Hanneke, Amin Karbasi, Shay Moran, Grigoris Velegkas

Nearly Optimal Algorithms for Linear Contextual Bandits with Adversarial Corruptions
Jiafan He, Dongruo Zhou, Tong Zhang, Quanquan Gu

Multiclass Learnability Beyond the PAC Framework: Universal Rates and Partial Concept Classes
Alkis Kalavasis, Grigoris Velegkas, Amin Karbasi

Temporal Latent Bottleneck: Synthesis of Fast and Slow Processing Mechanisms in Sequence Learning
Cenk Baykal, Nishanth Dikkala, Rina Panigrahy, Cyrus Rashtchian, Xin Wang

Pre-trained Language Models for Interactive Decision-Making
Shuang Li, Xavier Puig, Chris Paxton, Yilun Du, Clinton Wang, Linxi Fan, Tao Chen, De-An Huang, Ekin Akyürek, Anima Anandkumar, Jacob Andreas, Igor Mordatch, Antonio Torralba, Yuke Zhu

Polynomial Neural Fields for Subband Decomposition and Manipulation
Guandao Yang*, Sagie Benaim, Varun Jampani, Kyle Genova, Jonathan T. Barron, Thomas Funkhouser, Bharath Hariharan, Serge Belongie

Submodular Maximization in Clean Linear Time
Wenxin Li, Moran Feldman, Ehsan Kazemi, Amin Karbasi

Reinforcement Learning with Logarithmic Regret and Policy Switches
Grigoris Velegkas, Zhuoran Yang, Amin Karbasi

Algorithms with Prediction Portfolios
Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, Sergei Vassilvitskii

Understanding and Improving Robustness of Vision Transformers Through Patch-Based Negative Augmentation
Yao Qin, Chiyuan Zhang, Ting Chen, Balaji Lakshminarayanan, Alex Beutel, Xuezhi Wang

Best of Both Worlds Model Selection
Aldo Pacchiano, Christoph Dann, Claudio Gentile

Fair Wrapping for Black-Box Predictions
Alexander Soen, Ibrahim Alabdulmohsin, Sanmi Koyejo, Yishay Mansour, Nyalleng Moorosi, Richard Nock, Ke Sun, Lexing Xie

A Reduction to Binary Approach for Debiasing Multiclass Datasets
Ibrahim Alabdulmohsin, Jessica Schrouff, Oluwasanmi Koyejo

Weighted Distillation with Unlabeled Examples
Fotis Iliopoulos, Vasilis Kontonis, Cenk Baykal, Gaurav Menghani, Khoa Trihn,Erik Vee

A Closer Look at Learned Optimization: Stability, Robustness, and Inductive Biases
James Harrison, Luke Metz, Jascha Sohl-Dickstein

Post-hoc Estimators for Learning to Defer to an Expert
Harikrishna Narasimhan, Wittawat Jitkrittum, Aditya Krishna Menon, Ankit Singh Rawat, Sanjiv Kumar

Model-Based RL with Optimistic Posterior Sampling: Structural Conditions and Sample Complexity
Alekh Agarwal, Tong Zhang

On the Statistical Efficiency of Reward-Free Exploration in Non-Linear RL
Jinglin Chen, Aditya Modi, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal

Towards Learning Universal Hyperparameter Optimizers with Transformers (see blog post)
Yutian Chen, Xingyou Song, Chansoo Lee, Zi Wang, Qiuyi Zhang, David Dohan, Kazuya Kawakami, Greg Kochanski, Arnaud Doucet, Marc’aurelio Ranzato, Sagi Perel, Nando de Freitas

Reproducibility in Optimization: Theoretical Framework and Limits
Kwangjun Ahn*, Prateek Jain, Ziwei Ji, Satyen Kale, Praneeth Netrapalli, Gil I. Shamir

Confident Adaptive Language Modeling
Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Q. Tran, Yi Tay, Donald Metzler

Reinforcement Learning with Neural Radiance Fields
Danny Driess, Ingmar Schubert, Pete Florence, Yunzhu Li, Marc Toussaint

Invariant and Transportable Representations for Anti-Causal Domain Shifts
Yibo Jiang, Victor Veitch

Simple Mechanisms for Welfare Maximization in Rich Advertising Auctions
Gagan Aggarwal, Kshipra Bhawalkar, Aranyak Mehta, Divyarthi Mohan, Alexandros Psomas

STaR: Bootstrapping Reasoning with Reasoning
Eric Zelikman, Yuhuai Wu, Jesse Mu, Noah D. Goodman

Stochastic Online Learning with Feedback Graphs: Finite-Time and Asymptotic Optimality
Teodor V. Marinov, Mehryar Mohri, Julian Zimmert

The Curse of Unrolling: Rate of Differentiating Through Optimization
Damien Scieur, Quentin Bertrand, Gauthier Gidel, Fabian Pedregosa

Visual Prompting via Image Inpainting
Amir Bar, Yossi Gandelsman, Trevor Darrell, Amir Globerson, Alexei A Efros

Multi-Class H-Consistency Bounds
Pranjal Awasthi, Anqi Mao, Mehryar Mohri, Yutao Zhong

Anonymous Bandits for Multi-User Systems
Hossein Esfandiari, Vahab Mirrokni, Jon Schneider

Understanding the Eluder Dimension
Gene Li, Pritish Kamath, Dylan J. Foster, Nathan Srebro

Why So Pessimistic? Estimating Uncertainties for Offline RL Through Ensembles, and Why Their Independence Matters
Seyed Kamyar Seyed Ghasemipour, Shixiang Shane Gu, Ofir Nachum

A Best-of-Both-Worlds Algorithm for Bandits with Delayed Feedback
Saeed Masoudian, Julian Zimmert, Yevgeny Seldin

A Theoretical View on Sparsely Activated Networks
Cenk Baykal, Nishanth Dikkala, Rina Panigrahy, Cyrus Rashtchian, Xin Wang

Chain of Thought Prompting Elicits Reasoning in Large Language Models (see blog post)
Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, Denny Zhou

Decoupled Context Processing for Context Augmented Language Modeling
Zonglin Li, Ruiqi Guo, Sanjiv Kumar

Exploring Through Random Curiosity with General Value Functions
Aditya Ramesh, Louis Kirsch, Sjoerd van Steenkiste, Jürgen Schmidhuber

Object Scene Representation Transformer
Mehdi S. M. Sajjadi, Daniel Duckworth, Aravindh Mahendran, Sjoerd van Steenkiste, Filip Pavetić, Mario Lučić, Leonidas J. Guibas, Klaus Greff, Thomas Kipf

Joint Model-Policy Optimization of a Lower Bound for Model-Based RL
Benjamin Eysenbach, Alexander Khazatsky, Sergey Levine, Ruslan Salakhutdinov

A Fourier Approach to Mixture Learning
Mingda Qiao*, Guru Guruganesh, Ankit Singh Rawat, Avinava Dubey, Manzil Zaheer

Why Neural Networks Find Simple Solutions: The Many Regularizers of Geometric Complexity
Benoit Dherin, Michael Munn, Mihaela Rosca, David Barrett

Do Current Multi-task Optimization Methods in Deep Learning Even Help?
Derrick Xin, Behrooz Ghorbani, Ankush Garg, Orhan Firat, Justin Gilmer

Associating Objects and Their Effects in Video Through Coordination Games
Erika Lu, Forrester Cole, Weidi Xie, Tali Dekel, William Freeman, Andrew Zisserman, Michael Rubinstein

Increasing Confidence in Adversarial Robustness Evaluations
Roland S. Zimmermann*, Wieland Brendel, Florian Tramèr, Nicholas Carlini

The Role of Baselines in Policy Gradient Optimization
Jincheng Mei, Wesley Chung, Valentin Thomas, Bo Dai, Csaba Szepesvari, Dale Schuurmans

Scaling Multimodal Pre-training via Cross-Modality Gradient Harmonization
Junru Wu, Yi Liang, Feng Han, Hassan Akbari, Zhangyang Wang, Cong Yu*

S3GC: Scalable Self-Supervised Graph Clustering
Fnu Devvrit*, Aditya Sinha, Inderjit Dhillon, Prateek Jain

Algorithms and Hardness for Learning Linear Thresholds from Label Proportions
Rishi Saket

ALMA: Hierarchical Learning for Composite Multi-Agent Tasks
Shariq Iqbal, Robby Costales, Fei Sha

DC-BENCH: Dataset Condensation Benchmark
Justin Cui, Ruochen Wang, Si Si, Cho-Jui Hsieh

Does GNN Pre-training Help Molecular Representation?
Ruoxi Sun, Hanjun Dai, Adams Yu

Drawing Out of Distribution with Neuro-Symbolic Generative Models
Yichao Liang, Joshua B. Tenenbaum, Tuan Anh Le, N. Siddharth

Mixture-of-Experts with Expert Choice Routing (see blog post)
Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew Dai, Zhifeng Chen, Quoc Le, James Laudon

Near-Optimal Regret for Adversarial MDP with Delayed Bandit Feedback
Tiancheng Jin, Tal Lancewicki, Haipeng Luo, Yishay Mansour, Aviv Rosenberg

Precise Learning Curves and Higher-Order Scalings for Dot-Product Kernel Regression
Lechao Xiao, Jeffrey Pennington, Theodor Misiakiewicz, Hong Hu, Yue Lu

Rate-Optimal Online Convex Optimization in Adaptive Linear Control
Asaf Cassel, Alon Cohen, Tomer Koren

Why Neural Networks Find Simple Solutions: The Many Regularizers of Geometric Complexity
Benoit Dherin, Michael Munn, Mihaela Rosca, David G.T. Barrett

Private Isotonic Regression
Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi

Sketching Based Representations for Robust Image Classification with Provable Guarantees
Nishanth Dikkala, Sankeerth Rao Karingula, Raghu Meka, Jelani Nelson, Rina Panigrahy, Xin Wang

The Role of Baselines in Policy Gradient Optimization
Jincheng Mei, Wesley Chung, Valentin Thomas, Bo Dai, Csaba Szepesvari, Dale Schuurmans

Bringing Image Scene Structure to Video via Frame-Clip Consistency of Object Tokens
Elad Ben Avraham, Roei Herzig, Karttikeya Mangalam, Amir Bar, Anna Rohrbach, Leonid Karlinsky, Trevor Darrell, Amir Globerson

Near-Optimal Private and Scalable k-Clustering
Vincent Cohen-Addad, Alessandro Epasto, Vahab Mirrokni, Shyam Narayanan*, Peilin Zhong

When Does Differentially Private Learning Not Suffer in High Dimensions?
Xuechen Li, Daogao Liu, Tatsunori Hashimoto, Huseyin A Inan, Janardhan Kulkarni, YinTat Lee, Abhradeep Guha Thakurta

End-to-End Learning to Index and Search in Large Output Spaces
Nilesh Gupta, Patrick H. Chen, Hsiang-Fu, Yu, Cho-Jui Hsieh, Inderjit S. Dhillon

A Boosting Approach to Reinforcement Learning
Nataly Brukhim, Elad Hazan, Karan Singh

FedRolex: Model-Heterogeneous Federated Learning with Rolling Sub-Model Extraction
Samiul Alam, Luyang Liu, Ming Yan, Mi Zhang

Non-Convex Online Learning via Algorithmic Equivalence
Udaya Ghai, Zhou Lu, Elad Hazan

Is this the Right Neighborhood? Accurate and Query Efficient Model Agnostic Explanations
Amit Dhurandhar, Karthikeyan Natesan Ramamurthy, Karthikeyan Shanmugam

SAVi++: Towards End-to-End Object-Centric Learning from Real-World Videos
Gamaleldin F. Elsayed, Aravindh Mahendran, Sjoerd van Steenkiste, Klaus Greff, Michael C. Mozer, Thomas Kipf

UViM: A Unified Modeling Approach for Vision with Learned Guiding Codes
Alexander Kolesnikov, André Susano Pinto, Lucas Beyer, Xiaohua Zhai, Jeremiah Harmsen, Neil Houlsby

Implicit Regularization or Implicit Conditioning? Exact Risk Trajectories of SGD in High Dimensions
Courtney Paquette, Elliot Paquette, Ben Adlam, Jeffrey Pennington

Multi-game Decision Transformers (see blog post)
Kuang-Huei Lee, Ofir Nachum, Mengjiao Yang, Lisa Lee, Daniel Freeman, Winnie Xu, Sergio Guadarrama, Ian Fischer, Eric Jang, Henryk Michalewski, Igor Mordatch

Subsidiary Prototype Alignment for Universal Domain Adaptation
Jogendra Nath Kundu, Suvaansh Bhambri, Akshay Ravindra Kulkarni, Hiran Sarkar, Varun Jampani, Venkatesh Babu Radhakrishnan

SAMURAI: Shape And Material from Unconstrained Real-world Arbitrary Image collections
Mark Boss*, Andreas Engelhardt*, Abhishek Kar, Yuanzhen Li, Deqing Sun, Jonathan T. Barron, Hendrik P. A. Lensch, Varun Jampani

Chefs’ Random Tables: Non-Trigonometric Random Features
Valerii Likhosherstov, Krzysztof Marcin Choromanski, Avinava Dubey, Frederick Liu, Tamas Sarlos, Adrian Weller

Lottery Tickets on a Data Diet: Finding Initializations with Sparse Trainable Networks
Mansheej Paul, Brett W Larsen, Surya Ganguli, Jonathan Frankle, Gintare Karolina Dziugaite

DP-PCA: Statistically Optimal and Differentially Private PCA
Xiyang Liu, Weihao Kong, Prateek Jain, Sewoong Oh

Emergent Communication: Generalization and Overfitting in Lewis Games
Mathieu Rita, Corentin Tallec, Paul Michel, Jean-Bastien Grill, Olivier Pietquin, Emmanuel Dupoux, Florian Strub

Handcrafted Backdoors in Deep Neural Networks
Sanghyun Hong, Nicholas Carlini, Alexey Kurakin

I2DFormer: Learning Image to Document Attention for Zero-Shot Image Classification
Muhammad Ferjad Naeem, Yongqin Xian, Luc Van Gool, Federico Tombari

Improved Differential Privacy for SGD via Optimal Private Linear Operators on Adaptive Streams
Sergey Denisov, Brendan McMahan, Keith Rush, Adam Smith, Abhradeep Guha Thakurta

Optimal Scaling for Locally Balanced Proposals in Discrete Spaces
Haoran Sun*, Hanjun Dai, Dale Schuurmans

Near-Optimal Correlation Clustering with Privacy
Vincent Cohen-Addad, Chenglin Fan, Silvio Lattanzi, Slobodan Mitrović, Ashkan Norouzi-Fard, Nikos Parotsidis, Jakub Tarnawski

Thor: Wielding Hammers to Integrate Language Models and Automated Theorem Provers
Albert Q. Jiang, Wenda Li, Szymon Tworkowski, Konrad Czechowski, Tomasz Odrzygóźdź, Piotr Miłoś, Yuhuai Wu, Mateja Jamnik

TPU-KNN: K Nearest Neighbor Search at Peak FLOP/s
Felix Chern, Blake Hechtman, Andy Davis, Ruiqi Guo, David Majnemer, Sanjiv Kumar

When Does Dough Become a Bagel? Analyzing the Remaining Mistakes on ImageNet
Vijay Vasudevan, Benjamin Caine, Raphael Gontijo-Lopes, Sara Fridovich-Keil, Rebecca Roelofs

DASCO: Dual-Generator Adversarial Support Constrained Offline Reinforcement Learning
Quan Vuong, Aviral Kumar, Sergey Levine, Yevgen Chebotar

A Characterization of Semi-Supervised Adversarially Robust PAC Learnability
Idan Attias, Steve Hanneke, Yishay Mansour

Back Razor: Memory-Efficient Transfer Learning by Self-Sparsified Backpropagation
Ziyu Jiang, Xuxi Chen, Xueqin Huang, Xianzhi Du, Denny Zhou, Zhangyang Wang

Subquadratic Kronecker Regression with Applications to Tensor Decomposition
Matthew Fahrbach, Gang Fu, Mehrdad Ghadiri

Zero-Shot Transfer Learning Within a Heterogeneous Graph via Knowledge Transfer Networks
Minji Yoon*, John Palowitch, Dustin Zelle, Ziniu Hu*, Ruslan Salakhutdinov, Bryan Perozzi

Differentially Private Graph Learning via Sensitivity-Bounded Personalized PageRank
Alessandro Epasto, Vahab Mirrokni, Bryan Perozzi, Anton Tsitsulin, Peilin Zhong

Reincarnating Reinforcement Learning: Reusing Prior Computation to Accelerate Progress (see blog post)
Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, Marc G. Bellemare

Private and Communication-Efficient Algorithms for Entropy Estimation
Gecia Bravo-Hermsdorff, Robert Busa-Fekete, Mohammad Ghavamzadeh, Andres Munoz Medina, Umar Syed

Oracle Inequalities for Model Selection in Offline Reinforcement Learning
Jonathan Lee, George Tucker, Ofir Nachum, Bo Dai, Emma Brunskill

Diagnosing Failures of Fairness Transfer Across Distribution Shift in Real-World Medical Settings
Jessica Schrouff*, Natalie Harris, Oluwasanmi O Koyejo, Ibrahim Alabdulmohsin, Eva Schnider*, Krista Opsahl-Ong, Alexander Brown, Subhrajit Roy, Diana Mincu, Christina Chen, Awa Dieng, Yuan Liu, Vivek Natarajan, Alan Karthikesalingam, Katherine A Heller, Silvia Chiappa, Alexander D’Amour

LASSIE: Learning Articulated Shapes from Sparse Image Ensemble via 3D Part Discovery
Chun-Han Yao, Wei-Chih Hung, Yuanzhen Li, Michael Rubinstein, Ming-Hsuan Yang, Varun Jampani

Patching Open-Vocabulary Models by Interpolating Weights
Gabriel Ilharco, Mitchell Wortsman, Samir Yitzhak Gadre, Shuran Song, Hannaneh Hajishirzi, Simon Kornblith, Ali Farhadi, Ludwig Schmidt

TUSK: Task-Agnostic Unsupervised Keypoints
Yuhe Jin, Weiwei Sun, Jan Hosang, Eduard Trulls, Kwang Moo Yi

Active Learning of Classifiers with Label and Seed Queries
Marco Bressan, Nicolò Cesa-Bianchi, Silvio Lattanzi, Andrea Paudice, Maximilian Thiessen

Autoformalization with Large Language Models
Yuhuai Wu, Albert Q. Jiang, Wenda Li, Markus N. Rabe, Charles Staats, Mateja Jamnik, Christian Szegedy

Benign Underfitting of Stochastic Gradient Descent
Tomer Koren, Roi Livni, Yishay Mansour, Uri Sherman

Chain of Thought Imitation with Procedure Cloning
Mengjiao Yang, Dale Schuurmans, Pieter Abbeel, Ofir Nachum

Efficient and Modular Implicit Differentiation
Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-López, Fabian Pedregosa, Jean-Philippe Vert

Insights into Pre-training via Simpler Synthetic Tasks
Yuhuai Wu, Felix Li, Percy Liang

Self-Supervised Learning with an Information Maximization Criterion
Serdar Ozsoy, Shadi Hamdan, Sercan Ö. Arik, Deniz Yuret, Alper T. Erdogan

Trimmed Maximum Likelihood Estimation for Robust Generalized Linear Model
Weihao Kong, Rajat Sen, Pranjal Awasthi, Abhimanyu Das

Using Embeddings for Causal Estimation of Peer Influence in Social Networks
Irina Cristali, Victor Veitch

VCT: A Video Compression Transformer
Fabian Mentzer, George Toderici, David Minnen, Sung-Jin Hwang, Sergi Caelles, Mario Lucic, Eirikur Agustsson

Video Diffusion Models
Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, David J. Fleet

Large Language Models are Zero-Shot Reasoners
Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, Yusuke Iwasawa

Improved Coresets for Euclidean k-Means
Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, Chris Schwiegelshohn, Omar Ali Sheikh-Omar

On the Adversarial Robustness of Mixture of Experts
Joan Puigcerver, Rodolphe Jenatton, Carlos Riquelme Ruiz, Pranjal Awasthi, Srinadh Bhojanapalli

Stars: Tera-Scale Graph Building for Clustering and Learning
CJ Carey, Jonathan Halcrow, Rajesh Jayaram, Vahab Mirrokni, Warren Schudy, Peilin Zhong

VER: Scaling On-Policy RL Leads to the Emergence of Navigation in Embodied Rearrangement
Erik Wijmans, Irfan Essa, Dhruv Batra

TaSIL: Taylor Series Imitation Learning
Daniel Pfrommer, Thomas TCK Zhang, Stephen Tu, Nikolai Matni

RNNs of RNNs: Recursive Construction of Stable Assemblies of Recurrent Neural Networks
Leo Kozachkov, Michaela M Ennis, Jean-Jacques Slotine

Integral Probability Metrics PAC-Bayes Bounds
Ron Amit, Baruch Epstein, Shay Moran, Ron Meir

D2NeRF: Self-Supervised Decoupling of Dynamic and Static Objects from a Monocular Video
Tianhao Wu, Fangcheng Zhong, Andrea Tagliasacchi, Forrester Cole, Cengiz Oztireli

Posted Pricing and Dynamic Prior-Independent Mechanisms with Value Maximizers
Yuan Deng, Vahab Mirrokni, Hanrui Zhang

Transformer Memory as a Differentiable Search Index
Yi Tay, Vinh Q. Tran, Mostafa Dehghani, Jianmo Ni, Dara Bahri, Harsh Mehta, Zhen Qin, Kai Hui, Zhe Zhao, Jai Gupta, Tal Schuster, William W. Cohen, Donald Metzler



*Work done while at Google.  

Categories
Misc

Taking AI into Clinical Production with MONAI Deploy

With a wide breadth of open source, accelerated AI frameworks at their fingertips, medical AI developers and data scientists are introducing new algorithms for…

With a wide breadth of open source, accelerated AI frameworks at their fingertips, medical AI developers and data scientists are introducing new algorithms for clinical applications at an extraordinary rate. Many of these models are nothing short of groundbreaking, yet 87% of data science projects never make it into production.

In most data science teams, model developers lack a fast, consistent, easy-to-use, and scalable way to develop and package trained AI models into market-ready medical AI applications. These applications can help clinicians streamline imaging workflows, uncover hidden insights, improve productivity, and connect multi-modal patient information for deeper patient understanding.

MONAI, the Medical Open Network for AI, is bridging this gap from development to clinical deployment with MONAI Deploy. MONAI Deploy provides a set of open source tools for developing, packaging, testing, deploying, and running medical AI applications. It allows developers to build AI applications, orchestrate clinical AI workflows, and interoperate with medical imaging systems like PACS (picture archiving and communication systems) over standards like DICOM, FHIR, and HL7.

Medical AI applications built with MONAI

With MONAI, developers, researchers, and data scientists are building applications for a wide range of medical AI applications, including:

  • Classifying medical imaging studies for the presence of a disease or condition
  • Segmenting organs, lesions, and other structures
  • Creating markups to highlight areas of concern with arrows or heatmaps
  • Deriving insights for radiologist review for inclusion in a medical report
  • Batch processing medical imaging exams during long-term storage or for DICOM migrations
  • Processing live streams of data to ensure the patient is positioned properly prior to image acquisition
  • Identifying QA issues during the acquisition process to streamline departmental workflows
  • Identifying trends in data for population health assessments 

MONAI Model Zoo is a curated library of more than 15 pretrained models (CT, MR, Pathology, Endoscopy) that can be transformed into MONAI AI applications, jump-starting AI application development.

MONAI Deploy applications

One of the key components of MONAI Deploy is the MONAI Deploy App SDK, which helps researchers and developers take one or more trained models and build an application with a few lines of code in under 20 minutes. The application is created as a MAP (MONAI Application Package). As a portable containerized application, it can be deployed and run in clinical production anywhere that has a Docker engine. 

Screenshot of a clinical review user interface of a MAP for segmenting a stroke lesion in a brain scan. Three patient records appear on the left with subsequent scans, segmentations, and metadata in the viewer.
Figure 1. An example of a MONAI Application Package (MAP) for stroke lesion segmentation in a brain scan developed by the AI Centre for Value Based Healthcare

The MONAI Deploy App SDK provides predefined operators that can be reused and connected in an application development workflow, or you can create custom ones. These operators parse DICOM studies, select specific series with application-defined rules, and convert the selected DICOM series into required image formats along with metadata representing the pertinent DICOM attributes. 

The image is then further processed in the preprocessing stage to normalize spacing, orientation, intensity, and more, before pixel data as Tensors are used for inference. It also includes DICOM writers such as DICOM Segmentation (SEG), DICOM Structured Reports (SR), and DICOM encapsulated Stereolithography (STL). 

The resulting MAP includes one or more trained models, associated metadata, and the necessary interoperability (preprocessing and postprocessing) to do clinical inference in a single container.

Diagram showing the medical imaging workflow starting with DICOM input and through the Load DICOM data, Segment lung, and Classify steps, and ending with Write DICOM output.
Figure 2. A typical medical imaging AI app development workflow from DICOM input to DICOM output

Creating and deploying your MAP

The first step in building a MAP is to write the application itself. This consists of designing a workflow, creating operator classes, implementing an application class, and executing the application locally. The application class brings together tasks in a workflow graph with the operators that can be debugged locally in a Jupyter notebook or through Command Line Interface (CLI).

The following code shows an application class definition example:

 from monai.deploy.core import Application, env, resource
 
 
 @resource(cpu=1, gpu=1, memory="2Gi")
 # pip_packages can be a string that is a path(str) to requirements.txt file or a list of packages.
 @env(pip_packages=["scikit-image >= 0.17.2"])
 class App(Application):
     """This is a very basic application.
 
    This showcases the MONAI Deploy application framework.
    """

    # App's name. ('App') if not specified.
    name = "my_app"
    # App's description.  if not specified.
    description = "This is a reference application."
    # App's version.  or '0.0.0' if not specified.
    version = "0.1.0"

    def compose(self):
        # Execute `self.add_flow()` or `self.add_operator()` methods here.
        pass

if __name__ == "__main__":
    App(do_run=True)

The output of the application class is an application graph, which defines the flow of operators or tasks (Figure 3).

Flow diagram showing a series of operators in an application graph from DICOMDataLoader to DICOMSeriesSelector to DICOM SegmentationWriter
Figure 3. An example of an application graph that defines the flow of operators with the MONAI Deploy App SDK

After the application has been tested and verified, the application is packaged and deployed locally. The MONAI Deploy Application Packager converts an application into a deployable Docker image that can be executed locally, following the MAP specification.

To package an application to create a Docker image tagged my_app:latest use the following command:

$ monai-deploy package ./my_app -t my_app:latest --model ./model.pt

Building MONAI Application Package...
Successfully built my_app:latest

MONAI Deploy App SDK makes running and testing MAPs locally an easy process. The command-line Application Runner allows users to specify the input and output paths of the local file system to the input and output of the MAP during execution. It does not require an understanding of the internal details of the MAP.

MAPs can be deployed in multiple ways, each with different levels of integration with a hosting platform. Learn more about these options in the Deploying and Hosting MONAI App Package documentation. You can also see the list of platforms supporting MAPs.

Accelerating the MAP validation lifecycle with MONAI Deploy Express

For initial local testing of MAPs, the Application Runner within the MONAI Deploy App SDK is fast, simple, and recommended. However, the journey from development to production usually requires multiple steps across different environments, operated by different teams and with different requirements.

MONAI Deploy Express is designed to facilitate the testing and validation of MAPs in the early stages of this pipeline (or workstation environment), where ease of use and time to get started are most important. 

Using straightforward technologies like Docker and Docker Compose, MONAI Deploy Express can be installed in about 30 minutes. It allows users to quickly run MAPs, connect to a test PACS or their own test/research PACS for further validation, and confidently take steps towards production.

Reusing the same essential core services for DICOM I/O and AI workflow orchestration that could be used in a production environment provides the same functionality and consistent experience independent of where and how the applications are run, with minimal changes for the end user.

Diagram showing the MONAI Deploy Express end-to-end clinical data pipeline that includes the MONAI Informatics Gateway, MONAI Workflow Manager, and MONAI App SDK.
Figure 4. MONAI Deploy Express accelerates the validation of MAPs with an end-to-end clinical data pipeline that includes the MONAI Informatics Gateway, MONAI Workflow Manager, and MONAI App SDK

Bridging the gap from research innovation to clinical production

MONAI Deploy was designed to shorten the time-to-clinic for AI models. With the SDK, medical AI application developers and translational researchers can build AI applications that can run anywhere and accelerate the testing and validation of these models for clinical deployment.

To see real-world use cases for building MAPs with MONAI Deploy and explore clinical inference capabilities within the SDK, watch the on-demand lab, Creating Inference Applications for the Medical AI Project Lifecycle Using MONAI Deploy.

To get started with MONAI Deploy, install the MONAI Deploy App SDK using the following command: 

$ pip install monai-deploy-app-sdk

Numerous MONAI Deploy tutorials are available to help you create simple image processing apps, MedNIST classifier apps, and segmentation apps. Explore more MONAI Deploy resources to support your journey from development to deployment.

To validate your MAPs, download the latest release of MONAI Deploy Express and follow the README instructions. Sample workflows and MAPs for lung and liver segmentation are available, including validation datasets. Execution results can be visualized on Kibana.

Review, adopt, and help further improve the MAP specification. To review designs and requirements or open an issue, visit the monai-deploy-app-sdk GitHub repository.

Categories
Misc

Explainer: What Is a Machine Learning Model?

Fueled by data, ML models are the mathematical engines of AI, expressions of algorithms that find patterns and make predictions faster than a human can.

Fueled by data, ML models are the mathematical engines of AI, expressions of algorithms that find patterns and make predictions faster than a human can.

Categories
Misc

Explainer: What Is Quantum Computing?

Quantum computers, still in their infancy, are influencing a new generation of simulations already running on classical computers, and now accelerated with the…

Quantum computers, still in their infancy, are influencing a new generation of simulations already running on classical computers, and now accelerated with the NVIDIA cuQuantum SDK.

Categories
Misc

Upcoming Event: Accelerate YOLOv5 and Custom AI Models in ROS with NVIDIA Isaac

Learn about the NVIDIA Isaac ROS DNN Inference pipeline and how to use your own models with a YOLOv5 example in this December 1 webinar.

Learn about the NVIDIA Isaac ROS DNN Inference pipeline and how to use your own models with a YOLOv5 example in this December 1 webinar.

Categories
Misc

What Is a Smart Hospital?

Smart hospitals — which utilize data and AI insights to facilitate decision-making at each stage of the patient experience — can provide medical professionals with insights that enable better and faster care. A smart hospital uses data and technology to accelerate and enhance the work healthcare professionals and hospital management are already doing, such as Read article >

The post What Is a Smart Hospital? appeared first on NVIDIA Blog.

Categories
Misc

Sharpen Your Edge AI and Robotics Skills with the NVIDIA Jetson Nano Developer Kit

Are you interested in getting started with edge AI and robotics but not sure where to begin?  Look at the relaunched NVIDIA Jetson Nano Developer Kit…

Are you interested in getting started with edge AI and robotics but not sure where to begin? 

Look at the relaunched NVIDIA Jetson Nano Developer Kit available for purchase from partners starting November 25, 2022 in the US and worldwide in December.

Introduced 3 years ago, the NVIDIA Jetson Nano is a low-cost, entry-level AI computer for the embedded and edge AI market. With a familiar Linux environment, easy-to-follow tutorials, and ready-to-build open-source projects created by an active developer community, it’s the perfect tool for learning by doing.

This small, powerful computer lets you run multiple neural networks in parallel for applications like image classification, object detection, segmentation, and speech processing. All this is packed into an easy-to-use platform that runs in as little as five watts.

Jetson Nano in action

Last year, researchers from the University of Minnesota developed a neuroprosthetic hand that uses AI models based on recurrent neural networks (RNN) to read and decode an amputee’s intent of moving individual fingers from peripheral nerve activities. The AI models are deployed using an NVIDIA Jetson Nano as a portable, self-contained unit. 

Video 1. Researchers trained an AI neural decoder able running on an NVIDIA Jetson Nano to translate 46-year-old Shawn Findley’s thoughts into individual finger motions

Developer Arthur Findelair demonstrated how to augment a drone’s computer vision capabilities and enable gesture control of the drone using Jetson Nano’s computational power. 

Video 2. Using Jetson Nano’s computational power to control a drone with human gestures

Using the Jetson Nano Developer Kit, AI has become accessible to everyone. From projects predicting bus arrival times to real-time chess game analytics and from AI-based music synthesizers to automated vision-based warning systems for lab equipment, Jetson developers are discovering the diverse capabilities of AI using the Jetson Nano Developer Kit. 

To see other cool examples in action, see the latest Jetson community projects

Technical details

The Jetson Nano features:

  • A 128-core NVIDIA Maxwell GPU
  • A quad-core Arm A57 processing system
  • A video encoder and decoder
  • 4-GB LPDDR4 and 16-GB eMMC memory
  • A host of interfaces and I/Os:
    • High-speed I/O for CSI, PCIe, Gigabit Ethernet, and USB3
    • Video interfaces such as HDMI and DisplayPort
    • Standard I/O for I2C, I2S, SPI, and GPIO

For more information, see the product specifications.

The same software stack supports all NVIDIA Jetson modules and provides Jetson Linux, developer tools, CUDA-X accelerated libraries, and other NVIDIA technologies.

NVIDIA is continuing to enhance the Jetson family and set a new standard for entry-level AI with the Jetson Orin Nano series announced at GTC Fall 2022. 

The Jetson Orin Nano series delivers 80x the AI performance of the Jetson Nano. You can get started on your next-generation application today with the full software emulation support provided by the Jetson AGX Orin Developer Kit.

Learn more about developing for all the Jetson modules using emulation mode

Get started 

The NVIDIA Deep Learning Institute offers a variety of online courses to help you begin your journey with Jetson: 

DLI also offers a complete teaching kit for use by college and university courses. 

Video 3. Jetson AI Ambassador Sungsook Jang shares her work in South Korea teaching AI to students using the NVIDIA Jetson

Need other inspiration to get started with your first AI or robotics application? For tips, ideas, and answers to your development questions, visit the Jetson developer forums.

Get started with your own Jetson Nano 4GB Developer Kit, available for $149 (USD).

Categories
Misc

Improving Network Performance of HPC Systems Using NVIDIA Magnum IO NVSHMEM and GPUDirect Async

Today’s leading-edge high performance computing (HPC) systems contain tens of thousands of GPUs. In NVIDIA systems, GPUs are connected on nodes through the…

Today’s leading-edge high performance computing (HPC) systems contain tens of thousands of GPUs. In NVIDIA systems, GPUs are connected on nodes through the NVLink scale-up interconnect, and across nodes through a scale-out network like InfiniBand. The software libraries that GPUs use to communicate, share work, and efficiently operate in parallel are collectively called NVIDIA Magnum IO, the architecture for parallel, asynchronous, and intelligent data center IO.

For many applications, scaling to such large systems requires high efficiency for fine-grain communication between GPUs. This is especially critical for workloads targeting strong scaling, where computing resources are added to reduce the time to solve a given problem.

NVIDIA Magnum IO NVSHMEM is a communication library that is based on the OpenSHMEM specification and provides a partitioned global address space (PGAS) data access model to the memory of all GPUs in an HPC system.

This library is an especially suitable and efficient tool for workloads targeting strong scaling because of its support for GPU-integrated communication. In this model, data is accessed through one-sided read, write, and atomic update communication routines.

This communication model achieves a high efficiency for fine-grain data access through NVLink because of the tight integration with the GPU architecture. However, high efficiency for internode data access has remained a challenge because of the need for the host CPU to manage communication operations.

This post introduces a new communication methodology in NVSHMEM called InfiniBand GPUDirect Async (IBGDA) built on top of the GPUDirect Async family of technologies. IBGDA was introduced in NVSHMEM 2.6.0 and significantly improved upon in NVSHMEM 2.7.0 and 2.8.0. It enables the GPU to bypass the CPU when issuing internode NVSHMEM communication without any changes to existing applications. As we show, this leads to significant improvements in throughput and scaling for applications using NVSHMEM.

Proxy-initiated communication

Control flow diagram with four components: GPU, host memory, CPU, and NIC. The diagram marks the control flow with numbers corresponding to the sequence of operations described in this section.
Figure 1. GPU communications using the CPU proxy to initiate NIC communications causes communication bottlenecks

Using NVLink for intranode communication can be achieved through GPU streaming multiprocessor (SM)–initiated load and store instructions. However, internode communication involves submitting a work request to a network interface controller (NIC) to perform an asynchronous data transfer operation.

Before the introduction of IBGDA, the NVSHMEM InfiniBand Reliable Connection (IBRC) transport used a proxy thread on the CPU to manage communication (Figure 1). When using a proxy thread, NVSHMEM performs the following sequence of operations:

  1. The application launches a CUDA kernel that produces data in GPU memory.
  2. The application calls an NVSHMEM operation (such as nvshmem_put) to communicate with another processing element (PE). This operation can be called from within a CUDA kernel when performing fine-grain or overlapped communication. The NVSHMEM operation writes a work descriptor to the proxy buffer, which is in the host memory.
  3. The NVSHMEM proxy thread detects the work descriptor and initiates the corresponding network operation.

The following steps describe the sequence of operations performed by the proxy thread when interacting with an NVIDIA InfiniBand host channel adapter (HCA), such as the ConnectX-6 HCA:

  1. The CPU creates a work descriptor and enqueues it on the work queue (WQ) buffer, which resides in the host memory.
  2. This descriptor indicates the requested operation such as an RDMA write, and contains the source address, destination address, size, and other necessary network information.
  3. The CPU updates the doorbell record (DBR) buffer in the host memory. This buffer is used in the recovery path in case the NIC drops the write to its doorbell (DB).
  1. The CPU notifies the NIC by writing to its DB, which is a register in the NIC hardware.
  2. The NIC reads the work descriptor from the WQ buffer.
  3. The NIC directly copies the data from the GPU memory using GPUDirect RDMA.
  4. The NIC transfers the data to the remote node.
  5. The NIC indicates that the network operation is completed by writing an event to the completion queue (CQ) buffer on the host memory.
  6. The CPU polls on the CQ buffer to detect completion of the network operation.
  7. The CPU notifies the GPU that the operation has completed. If GDRCopy is present, it writes a notification flag to the GPU memory directly. Otherwise, it writes that flag to the proxy buffer. The GPU polls on the corresponding memory for the status of the work request.

While this approach is portable and can provide high bandwidth for bulk data transfers, it has two major drawbacks:

  • CPU cycles are continuously consumed by the proxy thread.
  • You cannot reach the peak NIC throughput for fine-grain transfers because of a bottleneck at the proxy thread. Modern NICs can process hundreds of millions of communication requests per second. While the GPU can generate requests at this rate, the CPU proxy’s processing rate is orders of magnitude lower, creating a bottleneck for fine-grain communication patterns.

InfiniBand GPUDirect Async

Control flow diagram shows two components: GPU and NIC, and how a GPU SM submits work descriptors to the NIC. The control flow arrows are marked with numbers, which are described in this section.
Figure 2. GPU communications using IBGDA enables a direct control path from GPU SM to NIC and removes the CPU from the critical path

In contrast with proxy-initiated communication, IBGDA uses GPUDirect Async–Kernel-Initiated (GPUDirect Async–KI) to enable the GPU SM to interact directly with NIC. This is shown in Figure 2 and involves the following steps.

  1. The application launches a CUDA kernel that produces data in the GPU memory.
  2. The application calls an NVSHMEM operation (such as nvshmem_put) to communicate with another PE. The NVSHMEM operation uses an SM to create a NIC work descriptor and writes it directly to the WQ buffer. Unlike the CPU Proxy method, this WQ buffer resides in the GPU memory.
  3. The SM updates the DBR buffer, which is also located in the GPU memory.
  4. The SM notifies the NIC by writing to the NIC’s DB register.
  5. The NIC reads the work descriptor in the WQ buffer using GPUDirect RDMA.
  6. The NIC reads the data in the GPU memory using GPUDirect RDMA.
  7. The NIC transfers the data to the remote node.
  8. The NIC notifies the GPU that the network operation is completed by writing to the CQ buffer using GPUDirect RDMA.

As shown, IBGDA eliminates the CPU from the communication control path. When using IBGDA, GPU and NIC directly exchange information necessary for communication. The WQ and DBR buffers are also moved to the GPU memory to improve efficiency when accessed by the SM, while preserving access by the NIC through GPUDirect RDMA.

Magnum IO NVSHMEM evaluation

We compared the performance of the NVSHMEM IBGDA transport with the NVSHMEM IBRC transport, which uses a proxy thread to manage communication. Both transports are part of the standard NVSHMEM distribution. All benchmarks and the case study were run on four DGX-A100 servers connected through NVIDIA ConnectX-6 200 Gb/s InfiniBand networking and an NVIDIA Quantum HDR switch.

To highlight the effect of IBGDA, we disabled communication through NVLink. This forces all transfers to be performed through the InfiniBand network even when PEs are located on the same node.

One-sided put bandwidth

We first ran the shmem_put_bw benchmark, which is included in the NVSHMEM performance test suite and uses nvshmem_double_put_nbi_block to issue data transfers. This test measures the bandwidth achieved when using one-sided write operations to transfer a fixed amount of total data over a range of communication parameters.

For internode transfers, this operation uses one thread in the thread block when performing network communication, regardless of how many threads are in the thread block. This is known and also referred to as a cooperative thread array (CTA). Two PEs were launched on different DGX-A100 nodes. This was set with one thread per thread block and one QP (NIC queue pair, containing the WQ and CQ) per thread block.

Graph x-axis depicts message sizes, while the y-axis represents bandwidth. Both axes are in base-2 logarithmic scale. Each line portrays the bandwidth at various message sizes of a given number of CTAs and QPs, which results in a roofline pattern. The graph reveals that IBRC cannot increase the bandwidth of small messages as the number of CTAs and QPs increase beyond four.
Figure 3. The bandwidth of shmem_put_bw with IBRC shows the bandwidth cap caused by CPU Proxy for small message sizes as you scale to more QPs and CTAs
Graph x-axis depicts message sizes, while the y-axis represents bandwidth. Both axes are in base-2 logarithmic scale. Each line portrays the bandwidth at various message sizes of a given number of CTAs and QPs, which results in a roofline pattern. The graph shows that the bandwidth of small message sizes increases as you scale the number of CTAs and QPs.
Figure 4. The bandwidth of shmem_put_bw with IBGDA demonstrates that the bandwidth of small message sizes can scale as the number of CTAs and QPs increases

Figures 3 and 4 show the bandwidth of shmem_put_bw with IBRC and IBGDA at various numbers of CTAs and message sizes. As shown, for coarse-grain communication with large messages, both IBGDA and IBRC can reach peak bandwidth. IBRC can saturate the network with messages as small as 16 KiB when the application issues communication from at least four CTAs.

Increasing the number of CTAs further does not reduce the minimum message size at which we observed peak bandwidth. The bottleneck limiting bandwidth for smaller messages is in the CPU Proxy thread. Although not shown here, we also tried increasing the number of CPU proxy threads and observed similar behavior.

By removing the proxy bottleneck, IBGDA achieved the peak bandwidth with messages as small as 2 KiB when 64 CTAs issue communication. This result highlights IBGDA’s ability to support a higher level of communication parallelism and the resulting performance improvement.

For IBRC and IBGDA, only one thread in each CTA participates in the network operations. In other words, only 64 threads (not 1,024×64 threads) are required to achieve peak bandwidth at 2 KiB message size.

It is also shown that IBGDA bandwidth continues to scale with the number of CTAs performing communication, whereas the IBRC proxy reaches its scaling limit at four CTAs. As a result, IBGDA provides up to 9.5x higher throughput for NVSHMEM block-put operations with message sizes less than 1 KiB.

Boosting throughput for small messages

The shmem_p_bw benchmark uses the scalar nvshmem_double_p operation to send data directly from a GPU register to the remote PE. This operation is thread-scoped, which means that each thread that calls this operation transfers an 8-byte data word.

In the following experiment, we launched 1,024 threads per CTA and increased the number of CTAs while keeping the number of QPs equal to the number of CTAs.

Graph shows the put rate of shmem_p_bw. The x-axis represents the number of CTAs, while the y-axis represents the put rate in million operations per second (MOPS). As you scale the number of CTAs, the put rate of IBRC is capped around 1.7 MOPS.
Figure 5. The put rate comparison between IBRC and IBGDA of shmem_p_bw shows the performance advantage of IBGDA on sending millions of small messages per second

On the other hand, the put rate of IBGDA could reach up to 180 MOPS, approaching the peak NIC message rate limit at 215 MOPS. The graph also shows that IBGDA could reach almost 2000 MOPS if the coalescing conditions are satisfied.

Figure 5 shows that the put rate, in million operations per second (MOPS), of IBRC is capped at around 1.7 MOPS regardless of the number of CTAs and QPs. On the other hand, the message rate of IBGDA increases with the number of CTAs, approaching the 215 MOPS hardware limit of the NVIDIA ConnectX-6 InfiniBand NIC with just eight CTAs.

In this configuration, IBGDA issues one work request to the NIC per nvshmem_double_p operation. This highlights an advantage of IBGDA for fine-grain communication involving large numbers of small messages.

IBGDA also provides automatic data coalescing when the destination addresses are contiguous within the same warp. This feature enables sending one large message instead of 32 small messages. It is useful for applications that want to transfer scattered data directly from GPU registers to a contiguous buffer at the destination.

Figure 5 shows that the put rate could reach beyond the NIC peak message rate when the data coalescing conditions are satisfied.

Jacobi method case study

The performance of the NVSHMEM Jacobi benchmark was analyzed to demonstrate the performance of IBGDA in real applications compared with IBRC. This repository includes two NVSHMEM implementations of the Jacobi solver.

In the first implementation, each thread uses the scalar nvshmem_p operation to send data as soon as it becomes available. This implementation is known to work well with NVLink but not with IBRC.

The second implementation aggregates data into a contiguous GPU buffer before each CTA calls nvshmem_put_nbi_block to initiate the communication. This data aggregation technique works well with IBRC but adds overhead on NVLink, where nvshmem_p operations can directly store data from a register to the remote PE’s buffer. This mismatch highlights a challenge when optimizing a given code for both scaling up and scaling out.

Graph with a matrix size of 32k × 32k and an element size is 4 bytes. The P implementation with IBRC has the latency starting from 40 seconds and increasing as you scale to more PEs. On the other hand, the latency of the P implementation with IBGDA starts from around 5 seconds and decreases as you add more PEs. This is similar to the latency of the PUT implementation of both IBRC and IBGDA, as well as the P implementation with NVLink.
Figure 6. Latency comparison of Jacobi implementations using P and PUT with IBRC and IBGDA

Figure 6 shows that IBGDA’s improvements to small message communication efficiency can help address these challenges. This chart shows the latency of 1,000 iterations of the Jacobi kernel for a strong scaling experiment where the number of PEs is increased while maintaining a fixed matrix size. With IBRC, the nvshmem_p version of Jacobi has more than 8x the latency of the nvshmem_put version.

On the other hand, both the nvshmem_p and nvshmem_put versions scale with IBGDA and match the efficiency of nvshmem_p on NVLink. The IBGDA nvshmem_p version matches the latency of nvshmem_put with IBRC.

Results show that nvshmem_p with IBGDA has a slightly higher latency compared with nvshmem_put. This is because sending one large message incurs lower network overhead compared with sending many small messages.

While such overheads are fundamental to networking, IBGDA can enable applications to hide them by submitting many small message transfer requests to the NIC in parallel.

All-to-all latency case study

Graph shows that for message sizes less than 8 KiB, the all-to-all latency of IBRC fluctuates between 128 us to 256 us, while that of IBGDA is consistent around 64 us.
Figure 7. Latency comparison of 32 PE All-to-All transfer between IBRC and IBGDA

Figure 7 shows the latency of the NVSHMEM all-to-all collective operation for IBRC and IBGDA, highlighting the small message performance benefits of IBGDA.

With IBRC, the proxy thread is a serialization point for all operations coming from the device. The proxy thread processes requests in batches to reduce overheads. However, depending on when operations are submitted to the device, there is a possibility that operations submitted at nearly the same time on the device will be processed by a separate loop of the proxy thread.

The serialization of operations by the proxy creates additional latency and masks the internal parallelism of both the NIC and GPU. The IBGDA results show an overall latency that is more consistent, especially for message sizes lower than 16 KiB.

Magnum IO NVSHMEM improves network performance

In this blog, we’ve shown how Magnum IO improves small message network performance, especially for large applications deployed across hundreds or thousands of nodes in HPC data centers.  NVSHMEM 2.6.0 introduced InfiniBand GPUDirect Async, which enables the GPU’s SM to submit communication requests directly to the NIC, bypassing the CPU for network communication on NVIDIA InfiniBand networks.

In comparison with the proxy method for managing communication, IBGDA can sustain significantly higher throughput rates at much smaller message sizes. These performance improvements are especially critical to applications that require strong scaling and tend to have message sizes that shrink as the workload is scaled to larger numbers of GPUs.

IBGDA also closes the small message throughput gap between NVLink and network communication, making it easier for you to optimize code to both scale-up and scale-out on today’s GPU-accelerated HPC systems.

Categories
Misc

Creators and Artists Take the Spotlight This Week ‘In the NVIDIA Studio’

In the NVIDIA Studio artists have sparked the imagination of and inspired countless creators to exceed their creative ambitions and do their best work.

The post Creators and Artists Take the Spotlight This Week ‘In the NVIDIA Studio’ appeared first on NVIDIA Blog.

Categories
Misc

Explainer: What’s a Cloud-Native Supercomputer?

The University of Cambridge, in the UK, and an NVIDIA DGX SuperPOD point way to the next generation of secure, efficient HPC clouds.

The University of Cambridge, in the UK, and an NVIDIA DGX SuperPOD point way to the next generation of secure, efficient HPC clouds.