Cooler weather, the changing colors of the leaves, the needless addition of pumpkin spice to just about everything, and discount Halloween candy are just some things to look forward to in the fall. GeForce NOW members can add one more thing to the list — 25 games joining the cloud gaming library in October, including Read article >
Thanks to earbuds, people can take calls anywhere, while doing anything. The problem: those on the other end of the call can hear all the background noise, too, whether it’s the roommate’s vacuum cleaner or neighboring conversations at a café. Now, work by a trio of graduate students at the University of Washington, who spent Read article >
When not engrossed in his studies toward a Ph.D. in statistics, conducting data-driven research on AI and robotics, or enjoying his favorite hobby of sailing, Yizhou Zhao is winning contests for developers who use NVIDIA Omniverse — a platform for connecting and building custom 3D pipelines and metaverse applications.
Machine learning (ML) is increasingly used across industries. Fraud detection, demand sensing, and credit underwriting are a few examples of specific use…
Machine learning (ML) is increasingly used across industries. Fraud detection, demand sensing, and credit underwriting are a few examples of specific use cases.
These machine learning models make decisions that affect everyday lives. Therefore, it’s imperative that model predictions are fair, unbiased, and nondiscriminatory. Accurate predictions become vital in high-risk applications where transparency and trust are crucial.
One way to ensure fairness in AI is to analyze the predictions obtained from a machine learning model. This exposes disparities and provides the opportunity to take corrective actions to diagnose and rectify the underlying cause.
Explainable AI (XAI) is a field of Responsible AI dedicated to studying techniques that explain how a machine learning model makes predictions. These explanations are human-understandable, enabling all stakeholders to make sense of the model’s output and make the necessary decisions. SHAP is one such technique used widely in industry to evaluate and explain a model’s prediction.
This post explains how you can train an XGBoost model, implement the SHAP technique in Python using a CPU and GPU, and finally compare results between the two. By the end of the post, you should be able to answer the following questions:
Why is it crucial to explain machine learning models, especially in high-stakes decisions?
How do we differentiate between Interpretable and Explainable techniques?
What is the SHAP technique, and how is it used to explain a model’s predictions?
What is the advantage of GPU-accelerated SHAP?
Explainability versus interpretability
In the context of artificial intelligence and machine learning, it is helpful to distinguish explainability from interpretability. The terms have distinct meanings but are often used interchangeably.
Explainability is a low-level, detailed mental representation that seeks to describe some complex processes. An explanation describes how some model mechanism or output came to be.
Interpretability
Interpretability is a high-level, meaningful mental representation that contextualizes a stimulus and leverages human background knowledge. An interpretable model should provide users with a description of what a data point or model output means in context.
The approaches to explaining model predictions can be broadly divided into model-specific and post-hoc techniques.
Model-specific
Algorithms like generalized linear models, decision trees, and generalized additive models are designed to be interpretable. These are called glassbox models because it is possible to trace and reason how a prediction was made. The techniques used to explain such models are model-specific because each method is based on some specific model’s internals. For instance, the interpretation of weights in linear models counts toward model-specific explanations.
Post-hoc
Post-hoc explainability techniques, as the name suggests, are applied after a model has been trained. Some well-known post-hoc techniques include SHAP, LIME, and Partial Dependence Plots. These are model agnostic. They work by treating the model as a BlackBox and assume they only have access to the model’s inputs and outputs. This makes them beneficial for complex algorithms, like boosted trees and deep neural nets, which are not explainable through model-specific techniques.
This post focuses on SHAP, a post-hoc technique for explaining model predictions.
Using the SHAP technique to explain models
SHAP is an acronym for SHapley Additive Explanations. It is one of the most commonly used post-hoc explainability techniques. SHAP leverages the concept of cooperative game theoryto break down a prediction to measure the impact of each feature on the prediction.
Shapley values are defined as the average marginal contribution of a feature value across all possible feature coalitions. A technique with origins in economics and game theory, Shapley values assign fair payouts to players in a coalition depending upon their contribution to the total gain. Translating this into a machine learning scenario means assigning importance to features in a model depending on their contribution to the model’s prediction.
SHAP unifies several approaches to generate accurate local feature importance values using Shapley values which can then be aggregated to obtain global explanations. SHAP values interpret the impact on the model’s prediction of a given feature having a specific value, compared to the prediction we’d make if that feature took some baseline value. A baseline value is a value that the model would predict if it had no information about any feature values.
SHAP is one of the most widely used post-hoc explainability technique for calculating feature attributions. It is model agnostic, can be used both as a local and global feature attribution technique and has credible theoretical support from economics. Additionally, a variant of SHAP for tree based models reduces the computation time considerably, thereby helping users to gain insights from models quickly.
The following section provides an example of how to use the SHAP technique.
Step 1: Training an XGBoost model and calculating SHAP values
Train an XGBoost model on the given dataset to predict whether a person earns more than $50K a year. Such data could be helpful in various use cases like target marketing.
Compute the SHAP values to explain the individual feature contributions.
Visualize and interpret the SHAP values.
Installation
SHAP can be installed using its stand-alone Python package called shap available on GitHub:
pip install shap
or
conda install -c conda-forge shap
SHAP is also inherently supported by popular algorithms like LightGBM, and XGBoost, and several R packages.
Setting up the environment
Start by setting up the environment and importing the necessary libraries:
import numpy as np
import pandas as pd
# Visualization Libraries
import matplotlib.pyplot as plt
%matplotlib inline
## Machine learning packages
from sklearn.model_selection import train_test_split
import xgboost as xgb
## Model Interpretation package
import shap
shap.initjs()
# Ensuring Reproducibility
SEED = 12345
# Ignoring the warnings
import warnings
warnings.filterwarnings(action = "ignore")
Dataset
This dataset comes from the UCI Machine Learning Repository Irvine and is available on Kaggle. It containsinformation about the demographic information of peoplebased on census data. The dataset has attributes such as education, and hours of work per week, age, and so on.
The shap library ships with some commonly used datasets, including the preprocessed version of the Adult Income Dataset used below.
Use of stolen or compromised credentials remains at the top of the list as the most common cause of a data breach. Because an attacker is using credentials or…
Use of stolen or compromised credentials remains at the top of the list as the most common cause of a data breach. Because an attacker is using credentials or passwords to compromise an organization’s network, they can bypass traditional security measures designed to keep adversaries out.
When they’re inside the network, attackers can move laterally and gain access to sensitive data, which can be extremely costly for an organization. In fact, it’s estimated that breaches caused by stolen or compromised credentials cost an average of $4.50 million in 2022.
Malicious activities in a network are hard to detect when performed by existing users, roles, or machine credentials. For this reason, these types of breaches take the longest, on average, to identify: 243 days and another 84 days on average to contain.
Companies might leverage user behavior analytics (UBA) to detect abnormal behavior based on a defined set of risks. With UBA, a baseline for each user or device is created and from that deviations from normal behaviors can be detected by comparing with past actions. UBA looks for patterns that might indicate anomalous behavior, based on known past behaviors.
There is an ever-increasing volume of data produced by a modern enterprise. Server logs, application logs, cloud logs, sensor telemetry, network, and disk information are now orders of magnitude larger than what can be stored by traditional security information and event management (SIEM) systems. The security operations team can examine only a fraction of that data.
What is digital fingerprinting?
Because enterprises are generating more data than they can collect and analyze, the vast majority of the data coming in goes untapped. Without tapping into this data, enterprises can’t build robust and rich models to enable them to detect deviations in their environment. The inability to examine this data leads to undetected security breaches, long remediation times, and ultimately huge financial issues for the company being breached.
But what if you could analyze 100% of the data across an enterprise—every user, every machine? People have unique characteristics and different ways that they interact with the network depending on their role. Understanding the day-to-day and moment-by-moment interactions of every user and device across the network is what we refer to as digital fingerprinting. Every user account within an organization has a unique digital fingerprint.
The value of digital fingerprinting
UBA looks for patterns that correlate bad behavior and focuses on threshold-based alerting. Digital fingerprinting is different because it identifies anti-patterns, or when things deviate from their normal patterns. For example, when a user account starts performing atypical yet permissible actions, traditional security methods may not trigger an alert.
To detect these anti-patterns, there must be a model for each user, to measure deviation. UBA is a shortcut because it tries to predict indicators of bad behavior. With digital fingerprinting, there are individual models to measure against.
To maximize the value of digital fingerprinting requires granularity and the ability to deploy thousands of models using unsupervised learning on a massive scale.
This can be done with NVIDIA Morpheus, a GPU-accelerated AI cybersecurity framework enabling developers to build optimized AI pipelines for filtering, processing, and classifying large volumes of real-time data. Morpheus includes a prebuilt, end-to-end workflow for digital fingerprinting, making it possible to achieve 100 percent data visibility.
A typical user may interact with 100 or more applications while doing their job. Integrations between these applications means that there may be tens of thousands of interconnections and permissions shared across those 100 applications. If you have 10,000 users, you’d need 10,000 models initially.
With the Morpheus digital fingerprinting pretrained workflow, massive amounts of data can be addressed, and hundreds of thousands, or even millions of models can be managed. Implementations of a digital fingerprinting workflow for cybersecurity enable organizations to analyze all the data across the network, as AI performs massive data filtration and reduction for real-time threat detection. Critical behavior anomalies can be rapidly identified for security analysts, so that they can more quickly identify and react to threats.
Figure 1. NVIDIA Morpheus digital fingerprinting workflow deployed across an enterprise of 25,000 employees
Video 1. Enterprise-Scale Cybersecurity Pinpoints Threats Faster
Experience the NVIDIA digital fingerprinting prebuilt model with a free hands-on lab on NVIDIA LaunchPad.
Julien Salinas wears many hats. He’s an entrepreneur, software developer and, until lately, a volunteer fireman in his mountain village an hour’s drive from Grenoble, a tech hub in southeast France. He’s nurturing a two-year old startup, NLP Cloud, that’s already profitable, employs about a dozen people and serves customers around the globe. It’s one Read article >
NVIDIA JetPack provides a full development environment for hardware-accelerated AI-at-the-edge on Jetson platforms. Previously, a standalone version of NVIDIA…
NVIDIA JetPack provides a full development environment for hardware-accelerated AI-at-the-edge on Jetson platforms. Previously, a standalone version of NVIDIA JetPack supports a single release of CUDA, and you did not have the ability to upgrade CUDA on a given NVIDIA JetPack version. NVIDIA JetPack is released on a rolling cadence with a single version of CUDA, typically being supported throughout each major release cycle (for example, NVIDIA JetPack 4.x or NVIDIA JetPack 5.x).
Starting with CUDA Toolkit 11.8, Jetson users on NVIDIA JetPack 5.0 and later can upgrade to the latest CUDA release without updating the NVIDIA JetPack version or Jetson Linux BSP (Board Support Package). You can stay on par with the CUDA Desktop releases.
CUDA on Jetson compared with CUDA on desktop
To understand why the CUDA support model has been different between the desktop with discrete-GPU (dGPU) and Jetson with integrated-GPU (iGPU), it helps to understand the following:
How CUDA is packaged on Jetson
How CUDA is packaged on desktop
The differences between them
Figure 1 shows the Jetson software architecture, with a core of the Jetson Linux BSP and layers of the various software components that make up the NVIDIA JetPack SDK. For more information, see Jetson Software Architecture.
Figure 1. Jetson software architecture
Figure 2 shows where CUDA resides in the overall NVIDIA JetPack SDK packaging structure and how it interacts with all other components of the Jetson Linux BSP. As you can see in Figure 2, the CUDA driver is part of the Jetson Linux BSP, along with other components. All these components update as per the release cadence and frequency of the Jetson Linux BSP, which has been different from the quarterly CUDA release cadence. The CUDA toolkit is separate from the BSP and does not package the CUDA driver.
When you install the NVIDIA JetPack SDK, the Jetson Linux BSP (containing the CUDA driver) and the CUDA toolkit get installed by default.
Figure 2. CUDA packaging on Jetson (iGPU); the CUDA driver is baked into the Jetson Linux BSP
Figure 3. CUDA packaging on Desktop (dGPU); the CUDA driver is part of the NV Display driver and UDA package
Due to this packaging structure, CUDA developers on desktop have the flexibility to stay up to date with the latest CUDA releases aligning with the CUDA quarterly release cadence. Moreover, features such as forward compatibility and minor version compatibility help you pick up combinations of driver and toolkit, and tailor it per your application needs.
CUDA upgradable package on Jetson
Starting from CUDA 11.8, CUDA has introduced an upgrade path that provides Jetson developers with an option to update the CUDA driver and the CUDA toolkit to the latest versions.
Figure 4 shows blue boxes that depict components that are present by default in the NVIDIA JetPack 5.0 SDK. The dotted line separates Jetson Linux BSP from the other components that are part of the NVIDIA JetPack SDK. The green boxes indicate the CUDA components that you can upgrade to through this feature.
Figure 4. CUDA upgrade path on Jetson
These upgrades are made possible by the introduction of the CUDA driver upgrade (also referred to as the CUDA compatibility package), as shown in Figure 5.
This upgrade package mainly contains the CUDA driver (libcuda.so.*) and its dependencies that enable you to access the latest and greatest CUDA functionalities that come with every quarterly CUDA release.
Without this package, you were previously limited to the functionality provided by the default CUDA driver that was packaged in the Jetson Linux BSP. You had no mechanism to upgrade to the latest CUDA driver and toolkit.
With this package, Jetson users who have invested in long and thorough validation cycles for the existing Jetson Linux BSP can upgrade to the latest CUDA versions. This upgrade is done over the existing Jetson Linux BSP, keeping it unchanged.
Figure 5. Introducing the new CUDA upgrade package
How to upgrade CUDA on Jetson
With CUDA 11.8, the CUDA Downloads page now displays a new architecture, aarch64-Jetson, as shown in Figure 6, with the associated aarch64-Jetson CUDA installer and provides step-by-step instructions on how to download and use the local installer, or CUDA network repositories, to install the latest CUDA release.
Figure 6. CUDA 11.8 downloads page with the aarch64-Jetson installer download option
The new aarch64-Jetson CUDA installer packages both the CUDA Toolkit and the upgrade package together. The step-by-step installation instructions provided ensure that the CUDA upgrade package gets downloaded and installed along with the corresponding CUDA toolkit for Jetson devices.
Figure 7. aarch64-Jetson CUDA installer for Jetson devices
The installed upgrade package is available in the versioned toolkit file directory. For example, you can find 11.8 in the following directory:
/usr/local/cuda-11.8/
The upgrade package consists of the following files:
libcuda.so.*: The CUDA driver.
libnvidia-nvvm.so.*: Just-in-time link-time optimization (CUDA 11.8 and later only).
libnvidia-ptxjitcompiler.so.*: The JIT (just-in-time) compiler for PTX files.
These files together implement the CUDA driver interface. This package only provides the files and does not configure the system.
If you are working on an x86 host and cross-compiling to the aarch64-Jetson target, the U20.04 CUDA host installer can be found on the CUDA Downloads page. The cross-compile bits can be found in the following directory:
aarch64-jetson/cross/Ubuntu/20.04/deb installer
Example
The following code example shows how the CUDA Upgrade package can be installed and used to run the applications.
$ sudo apt-get -y install cuda
Reading package lists...
Building dependency tree...
Reading state information...
The following additional packages will be installed:
cuda-11-8 cuda-cccl-11-8 cuda-command-line-tools-11-8 cuda-compat-11-8
...…
The following NEW packages will be installed:
cuda cuda-11-8 cuda-cccl-11-8 cuda-command-line-tools-11-8 cuda-compat-11-8
...…
0 upgraded, 48 newly installed, 0 to remove and 38 not upgraded.
Need to get 15.7 MB/1,294 MB of archives.
After this operation, 4,375 MB of additional disk space will be used.
Get:1 http://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/arm64 cuda-compat-11-8 11.8.31058490-1 [15.8 MB]
Fetched 15.7 MB in 12s (1,338 kB/s)
Selecting previously unselected package cuda-compat-11-8.
(Reading database ...
...…
(Reading database ... 100%
(Reading database ... 148682 files and directories currently installed.)
Preparing to unpack .../00-cuda-compat-11-8_11.8.31058490-1_arm64.deb ...
Unpacking cuda-compat-11-8 (11.8.31058490-1) ...
...…
Unpacking cuda-11-8 (11.8.0-1) ...
Selecting previously unselected package cuda.
Preparing to unpack .../47-cuda_11.8.0-1_arm64.deb ...
Unpacking cuda (11.8.0-1) ...
Setting up cuda-toolkit-config-common (11.8.56-1) ...
Setting up cuda-compat-11-8 (11.8.31058490-1) ...
$ ls -l /usr/local/cuda-11.8/compat
total 55300
lrwxrwxrwx 1 root root 12 Jan 6 19:14 libcuda.so -> libcuda.so.1
lrwxrwxrwx 1 root root 14 Jan 6 19:14 libcuda.so.1 -> libcuda.so.1.1
-rw-r--r-- 1 root root 21702832 Jan 6 19:14 libcuda.so.1.1
lrwxrwxrwx 1 root root 19 Jan 6 19:14 libnvidia-nvvm.so -> libnvidia-nvvm.so.4
lrwxrwxrwx 1 root root 23 Jan 6 19:14 libnvidia-nvvm.so.4 -> libnvidia-nvvm.so.4.0.0
-rw-r--r-- 1 root root 24255256 Jan 6 19:14 libnvidia-nvvm.so.4.0.0
-rw-r--r-- 1 root root 10665608 Jan 6 19:14 libnvidia-ptxjitcompiler.so
lrwxrwxrwx 1 root root 27 Jan 6 19:14 libnvidia-ptxjitcompiler.so.1 -> libnvidia-ptxjitcompiler.so
The user can set LD_LIBRARY_PATH to include the libraries installed by upgrade package before running the CUDA 11.8 application:
$ LD_LIBRARY_PATH=/usr/local/cuda-11.8/compat:$LD_LIBRARY_PATH ~/Samples/1_Utilities/deviceQuery
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "Orin"
CUDA Driver Version / Runtime Version 11.8 / 11.8
CUDA Capability Major/Minor version number: 8.7
......
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 11.8, CUDA Runtime Version = 11.8, NumDevs = 1
Result = PASS
The default drivers (originally installed with NVIDIA JetPack and part of the Jetson Linux BSP) are retained by the installer. The application can use either the default version of CUDA (originally installed with NVIDIA JetPack) or the one installed by the upgrade package. Use the LD_LIBRARY_PATH variable to choose the required version.
Only a single CUDA upgrade package can be installed at any point in time on a given system. While installing a new CUDA upgrade package, the previous version of the installed upgrade package is removed and replaced with the new one. Installation of the upgrade package fails if it is not compatible with the NVIDIA JetPack version.
For example, applications that were previously compiled with CUDA 11.4 continue to work with the CUDA 11.8 upgrade package due to backward compatibility in the CUDA driver.
Table 1 shows the CUDA user-mode driver (UMD) and CUDA Toolkit version compatibility for the NVIDIA JetPack 5.0 release.
Table 1. CUDA UMD version compatibility with CUDA Toolkit release
This feature is available from CUDA 11.8 and NVIDIA JetPack 5.0 onwards and will be supported on the latest Jetson Linux releases.
CUDA upgrade package only updates the CUDA driver interfaces while leaving the rest of the NVIDIA JetPack SDK components unchanged. If a new feature in the latest CUDA driver needs an updated NVIDIA JetPack SDK component or interface, it might return an error when called. For more information about feature compatibility, see the CUDA release notes.
Users are requested to check for compatibility of new CUDA versions with the NVIDIA JetPack SDK version being used, as not all NVIDIA JetPack SDKs support all versions of CUDA. For more information about compatible versions, see CUDA for Tegra App Note.
On Jetson, the compute stack of CUDA, cuDNN, TensorRT, and so on, was tightly tied to a particular version of Jetson Linux (L4T). To upgrade to a newer version of the compute stack, you also had to deal with upgrading to Jetson Linux.
We are working towards a future where Jetson developers can migrate to newer versions of the compute libraries without upgrading Jetson Linux. This CUDA feature that enables upgrading CUDA is a step in that direction.
Upgrade to the latest CUDA release on your Jetson today!
On the CUDA 11.8 Downloads page, download the CUDA installer for aarch64-Jetson and follow the installation instructions to upgrade your Jetson device to CUDA 11.8.
For information about all the new features that CUDA 11.8 brings in, see CUDA 11.8 Omnibus.
If you have any questions or require support, post your questions on the Jetson forum.
Do register for the NVIDIA JetPack 5 deep-dive webinar. The CUDA and Jetson team walk you through details on this new feature and you get an opportunity to ask questions live!
We sat down with Dinggen Zhan of NetEase to discuss his team’s implementation of path tracing in the popular martial arts game, Justice Online. What is your…
We sat down with Dinggen Zhan of NetEase to discuss his team’s implementation of path tracing in the popular martial arts game, Justice Online.
What is your professional background and current job role?
I have more than 20 years of experience in the gaming industry. I joined NetEase in 2012, and am now senior technical expert and lead programmer for Justice.
Why did NetEase decide to integrate a path tracer into Justice?
Back in 2018, NVIDIA launched the first RTX GPU. At that time, we immediately integrated RTX features into Justice and quickly pushed it online. NVIDIA RTX Path Tracing is the ultimate solution for ray tracing. It has excellent visual results and solves all the pain points caused by illumination under rasterization. We stick to using cutting-edge technologies in our development work to create high-image quality games and enhance players’ immersive gaming experience.
Figure 1. A group of NetEase employees
What NVIDIA technologies did you use to make the path tracing work?
How did the path tracer affect your lighting production during the Justice development process?
The path tracing technology provides a way to create realistic illumination systems, especially suitable for producing natural and delicate indirect illuminations. Therefore, we do not need to spend time manually adjusting lights in scenes. Instead, we only need to add the corresponding lights for emissive objects such as lanterns and leave the rest to the path tracer to complete the calculation.
Why is physically accurate lighting important for the games you develop?
The rendering pipeline of Justice is built on physically based rendering (PBR). Realistic physical illumination is naturally implemented with path tracing, which improves visual appeal and reduces defects. The artists have more control over the look, and it is convenient to integrate.
What challenges did you face during the process of integrating ray tracing?
New technologies generally bring new problems, and the debugging process is particularly more difficult. Fortunately, NVIDIA has upgraded the NVIDIA Nsight debugging tool in time, making it an easier process for development work. The current real-time path tracer needs to be improved over several optical effects including caustics, translucency, and the skin materials of subsurface scattering.
Figure 2. RTX path tracing in a temple scene from the NetEase game, Justice
What challenges were you looking to solve with the path tracer?
In the past, rasterized rendering of direct illumination, indirect illumination, reflection, and shadow were done with separated passes, which could not ensure accuracy. Path tracing unifies the computation of light transport, simplifies the whole rendering pipeline, and makes the final results immediately visible, allowing artists more control for content creation.
How long did it take for you to get the path tracer up and running?
From beginning to end, it took us about five to six months. The first three months were mainly for function integration, while the later stage was focused on effect tuning, performance optimization, and debugging.
Did you encounter any surprises during the integration process?
The realism of the path-traced pictures is amazing, and one notch above basic ray tracing. NVIDIA DLSS 3 also boosts the performance of the path tracer beyond all expectations.
How has path tracing affected your visuals and gameplay?
Path tracing can help game visuals reach cinematic realism, bringing the real-time rendering experience to the film production level. Video game players will feel like they are in the real world of each game. The visual experience is unprecedented, and there are infinite possibilities for the current metaverse development.
Figure 3. A sunset reflecting off a pond in Justice
Can you share any tips or lessons learned for other developers looking to integrate path tracing technology?
First, make sure that your game engine has a physically based rendering pipeline, which will reduce the integration issues. For certain special materials, the current path tracer cannot work completely without rasterization, and it is recommended to use in conjunction with a rasterizer.
Second, pay attention to the coherence of motion vectors and depth because the denoiser is quite sensitive to motion vectors, whether the motion vectors are in world space or screen space. The flag settings of the denoiser must be correct too. The depth buffer is in the floating-point range (0-1), and if it is reversed, it can affect the denoising and anti-aliasing results.
Third, our path tracing is based on the NVIDIA Falcor engine, which is written in the shader language Slang. Integrating is a complicated and time-consuming task. We chose to translate Slang into HLSL at first. Since manually translating the entire Falcor shaders could be an onerous task, we simplified the Falcor codebase. Debugging costs us significant time. Looking back now, it would have been wise to take time to support the entire Slang at the beginning of the integration and put in the whole Falcor path tracing codebase. The integration process might go smoother, save us some time, and help support Falcor’s future functionalities and features.
Do you plan to integrate path tracing into future NetEase games?
The amazing visual quality of path tracing is beyond the reach of any rasterization technique. In the future, we will continue investing more resources to develop path traced levels, and improve the quality and performance in the game.
Visit the NetEase website for more information about the company.