Categories
Misc

Achieve Innovative Hyperconverged Networking with NVIDIA Spectrum Ethernet and Microsoft Azure Stack HCI

Enterprises of all sizes are increasingly leveraging virtualization and hyperconverged infrastructure (HCI). This technology delivers reliable and secure…

Enterprises of all sizes are increasingly leveraging virtualization and hyperconverged infrastructure (HCI). This technology delivers reliable and secure compute resources for operations while reducing data center footprint. HCI clusters rely on robust, feature-rich networking fabrics to deliver on-premises solutions that can seamlessly connect to the cloud. 

Microsoft Azure Stack HCI is a hyperconverged infrastructure cluster solution that can run containerized applications. It hosts virtualized Windows and Linux workloads and storage in a hybrid environment that combines on-premises infrastructure with Azure cloud services. The server components of Azure Stack HCI can be interconnected using devices that support the appropriate validation requirements.

NVIDIA Spectrum Ethernet switches are purpose-built networking solutions designed to support the requirements of Microsoft Azure Stack HCI. This on-premises solution enables enterprises to leverage cloud functionality, effectively creating a hybrid cloud solution.

Spectrum switches provide end-to-end ethernet for reliable networking with Azure Stack HCI. Spectrum switches also are available in multiple form factors including half-width 10/25/100 Gb/s TORs, two of which can be installed side-by-side in 1 RU (rack unit) space to accommodate the throughput, port density, and high availability required.

The NVIDIA networking team worked closely with the Microsoft networking team to ensure that NVIDIA Spectrum switches meet the physical network requirements for Azure Stack HCI, including:

  • Priority Flow Control
  • Enhanced Transmission Selection
  • Custom TLVs in LLDP transmission

These features are delivered through Cumulus Linux (starting with version 5.1 and continuing in all subsequent releases), the flagship network operating system for NVIDIA Ethernet switches. Cumulus Linux is an open operating system with a “drive it your way” philosophy for management. It comes with a comprehensive data model based CLI known as NVUE (NVIDIA User Experience). But since it is a Linux network operating system, users can interact with Cumulus Linux as a pure Linux system. The flexibility of the configuration methodology allows it to easily integrate with whatever automation toolset you prefer.

“We are pleased to see NVIDIA Spectrum Ethernet switches optimized for Microsoft Azure Stack HCI,” says Tim Isaacs, General Manager at Microsoft. “With the combination of the newly introduced Network HUD feature in the latest Azure Stack HCI release and NVIDIA’s updated Cumulus Linux network operating system for Spectrum Ethernet switches, we can jointly provide our customers rich and robust visibility into their Azure Stack HCI network environment.” 

Finally, NVIDIA worked closely with the Microsoft team to create standardized configurations for the switches to optimize traffic between the different hyperconverged nodes. Through testing a full Azure Stack HCI deployment using NVIDIA Spectrum switches, the configurations were generated to ensure a seamless experience during server deployment. These configurations are available through the Microsoft standard deployment experience.

To get NVIDIA Spectrum switches for your Microsoft Azure Stack HCI deployment, visit the NVIDIA online store or talk to an NVIDIA partner.

Categories
Misc

Upcoming Event: Speech AI Summit 2022

Join experts from Google, Meta, NVIDIA, and more at the first annual NVIDIA Speech AI Summit. Register now!

Join experts from Google, Meta, NVIDIA, and more at the first annual NVIDIA Speech AI Summit. Register now!

Categories
Misc

3D Artist SouthernShotty Creates Wholesome Characters This Week ‘In the NVIDIA Studio’

This week ‘In the NVIDIA Studio,’ we’re highlighting 3D and motion graphics artist SouthernShotty — and scenes from his soon-to-be released short film, Watermelon Girl. 

The post 3D Artist SouthernShotty Creates Wholesome Characters This Week ‘In the NVIDIA Studio’ appeared first on NVIDIA Blog.

Categories
Misc

Upcoming Event: Healthcare & Life Sciences Developer Summit November 10, 2022

A virtual event designed for healthcare developers and startups, this summit on November 10, 2022 offers a full day of technical talks to reach developers and…

A virtual event designed for healthcare developers and startups, this summit on November 10, 2022 offers a full day of technical talks to reach developers and technical leaders in the EMEA region. Get best practices and insights for applications, from biopharma to medical imaging.

Categories
Misc

New Course: Get Started with Highly Accurate Custom ASR for Speech AI

Learn how to build, train, customize, and deploy a GPU-accelerated automatic speech recognition service with NVIDIA Riva in this self-paced course.

Learn how to build, train, customize, and deploy a GPU-accelerated automatic speech recognition service with NVIDIA Riva in this self-paced course.

Categories
Misc

What Are Graph Neural Networks?

When two technologies converge, they can create something new and wonderful — like cellphones and browsers were fused to forge smartphones. Today, developers are applying AI’s ability to find patterns to massive graph databases that store information about relationships among data points of all sorts. Together they produce a powerful new tool called graph neural Read article >

The post What Are Graph Neural Networks? appeared first on NVIDIA Blog.

Categories
Misc

Keep On Trucking: SenSen Harnesses Drones, NVIDIA Jetson, Metropolis to Inspect Trucks

Sensor AI solutions specialist SenSen has turned to the NVIDIA Jetson edge AI platform to help regulators track heavy vehicles moving across Australia. Australia’s National Heavy Vehicle Regulator, or NHVR, has a big job — ensuring the safety of truck drivers across some of the world’s most sparsely populated regions. They’re now harnessing AI to Read article >

The post Keep On Trucking: SenSen Harnesses Drones, NVIDIA Jetson, Metropolis to Inspect Trucks appeared first on NVIDIA Blog.

Categories
Offsites

Google at ECCV 2022

Google is proud to be a Platinum Sponsor of the European Conference on Computer Vision (ECCV 2022), a premier forum for the dissemination of research in computer vision and machine learning (ML). This year, ECCV 2022 will be held as a hybrid event, in person in Tel Aviv, Israel with virtual attendance as an option. Google has a strong presence at this year’s conference with over 60 accepted publications and active involvement in a number of workshops and tutorials. We look forward to sharing some of our extensive research and expanding our partnership with the broader ML research community.

Registered for ECCV 2022? We hope you’ll visit our on-site or virtual booths to learn more about the research we’re presenting at ECCV 2022, including several demos and opportunities to connect with our researchers. Learn more about Google’s research being presented at ECCV 2022 below (Google affiliations in bold).

Organizing Committee

Program Chairs include: Moustapha Cissé

Awards Paper Committee: Todd Zickler

Area Chairs include: Ayan Chakrabarti, Tali Dekel, Alireza Fathi, Vittorio Ferrari, David Fleet, Dilip Krishnan, Michael Rubinstein, Cordelia Schmid, Deqing Sun, Federico Tombari, Jasper Uijlings, Ming-Hsuan Yang, Todd Zickler

Accepted Publications

NeuMesh: Learning Disentangled Neural Mesh-Based Implicit Field for Geometry and Texture Editing
Bangbang Yang, Chong Bao, Junyi Zeng, Hujun Bao, Yinda Zhang, Zhaopeng Cui, Guofeng Zhang

Anti-Neuron Watermarking: Protecting Personal Data Against Unauthorized Neural Networks
Zihang Zou, Boqing Gong, Liqiang Wang

Exploiting Unlabeled Data with Vision and Language Models for Object Detection
Shiyu Zhao, Zhixing Zhang, Samuel Schulter, Long Zhao, Vijay Kumar B G, Anastasis Stathopoulos, Manmohan Chandraker, Dimitris N. Metaxas

Waymo Open Dataset: Panoramic Video Panoptic Segmentation
Jieru Mei, Alex Zhu, Xinchen Yan, Hang Yan, Siyuan Qiao, Yukun Zhu, Liang-Chieh Chen, Henrik Kretzschmar

PRIF: Primary Ray-Based Implicit Function
Brandon Yushan Feng, Yinda Zhang, Danhang Tang, Ruofei Du, Amitabh Varshney

LoRD: Local 4D Implicit Representation for High-Fidelity Dynamic Human Modeling
Boyan Jiang, Xinlin Ren, Mingsong Dou, Xiangyang Xue, Yanwei Fu, Yinda Zhang

k-Means Mask Transformer (see blog post)
Qihang Yu*, Siyuan Qiao, Maxwell D Collins, Yukun Zhu, Hartwig Adam, Alan Yuille, Liang-Chieh Chen

MaxViT: Multi-Axis Vision Transformer (see blog post)
Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, Yinxiao Li

E-Graph: Minimal Solution for Rigid Rotation with Extensibility Graphs
Yanyan Li, Federico Tombari

RBP-Pose: Residual Bounding Box Projection for Category-Level Pose Estimation
Ruida Zhang, Yan Di, Zhiqiang Lou, Fabian Manhardt, Federico Tombari, Xiangyang Ji

GOCA: Guided Online Cluster Assignment for Self-Supervised Video Representation Learning
Huseyin Coskun, Alireza Zareian, Joshua L Moore, Federico Tombari, Chen Wang

Scaling Open-Vocabulary Image Segmentation with Image-Level Labels
Golnaz Ghiasi, Xiuye Gu, Yin Cui, Tsung-Yi Lin*

Adaptive Transformers for Robust Few-Shot Cross-Domain Face Anti-spoofing
Hsin-Ping Huang, Deqing Sun, Yaojie Liu, Wen-Sheng Chu, Taihong Xiao, Jinwei Yuan, Hartwig Adam, Ming-Hsuan Yang

DualPrompt: Complementary Prompting for Rehearsal-Free Continual Learning
Zifeng Wang*, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren, Guolong Su, Vincent Perot, Jennifer Dy, Tomas Pfister

BLT: Bidirectional Layout Transformer for Controllable Layout Generation
Xiang Kong, Lu Jiang, Huiwen Chang, Han Zhang, Yuan Hao, Haifeng Gong, Irfan Essa

V2X-ViT: Vehicle-to-Everything Cooperative Perception with Vision Transformer
Runsheng Xu, Hao Xiang, Zhengzhong Tu, Xin Xia, Ming-Hsuan Yang, Jiaqi Ma

Learning Visibility for Robust Dense Human Body Estimation
Chun-Han Yao, Jimei Yang, Duygu Ceylan, Yi Zhou, Yang Zhou, Ming-Hsuan Yang

Are Vision Transformers Robust to Patch Perturbations?
Jindong Gu, Volker Tresp, Yao Qin

PseudoAugment: Learning to Use Unlabeled Data for Data Augmentation in Point Clouds
Zhaoqi Leng, Shuyang Cheng, Ben Caine, Weiyue Wang, Xiao Zhang, Jonathon Shlens, Mingxing Tan, Dragomir Anguelov

Structure and Motion from Casual Videos
Zhoutong Zhang, Forrester Cole, Zhengqi Li, Noah Snavely, Michael Rubinstein, William T. Freeman

PreTraM: Self-Supervised Pre-training via Connecting Trajectory and Map
Chenfeng Xu, Tian Li, Chen Tang, Lingfeng Sun, Kurt Keutzer, Masayoshi Tomizuka, Alireza Fathi, Wei Zhan

Novel Class Discovery Without Forgetting
Joseph K J, Sujoy Paul, Gaurav Aggarwal, Soma Biswas, Piyush Rai, Kai Han, Vineeth N Balasubramanian

Hierarchically Self-Supervised Transformer for Human Skeleton Representation Learning
Yuxiao Chen, Long Zhao, Jianbo Yuan, Yu Tian, Zhaoyang Xia, Shijie Geng, Ligong Han, Dimitris N. Metaxas

PACTran: PAC-Bayesian Metrics for Estimating the Transferability of Pretrained Models to Classification Tasks
Nan Ding, Xi Chen, Tomer Levinboim, Soravit Changpinyo, Radu Soricut

InfiniteNature-Zero: Learning Perpetual View Generation of Natural Scenes from Single Images
Zhengqi Li, Qianqian Wang*, Noah Snavely, Angjoo Kanazawa*

Generalizable Patch-Based Neural Rendering (see blog post)
Mohammed Suhail*, Carlos Esteves, Leonid Sigal, Ameesh Makadia

LESS: Label-Efficient Semantic Segmentation for LiDAR Point Clouds
Minghua Liu, Yin Zhou, Charles R. Qi, Boqing Gong, Hao Su, Dragomir Anguelov

The Missing Link: Finding Label Relations Across Datasets
Jasper Uijlings, Thomas Mensink, Vittorio Ferrari

Learning Instance-Specific Adaptation for Cross-Domain Segmentation
Yuliang Zou, Zizhao Zhang, Chun-Liang Li, Han Zhang, Tomas Pfister, Jia-Bin Huang

Learning Audio-Video Modalities from Image Captions
Arsha Nagrani, Paul Hongsuck Seo, Bryan Seybold, Anja Hauth, Santiago Manen, Chen Sun, Cordelia Schmid

TL;DW? Summarizing Instructional Videos with Task Relevance & Cross-Modal Saliency
Medhini Narasimhan*, Arsha Nagrani, Chen Sun, Michael Rubinstein, Trevor Darrell, Anna Rohrbach, Cordelia Schmid

On Label Granularity and Object Localization
Elijah Cole, Kimberly Wilber, Grant Van Horn, Xuan Yang, Marco Fornoni, Pietro Perona, Serge Belongie, Andrew Howard, Oisin Mac Aodha

Disentangling Architecture and Training for Optical Flow
Deqing Sun, Charles Herrmann, Fitsum Reda, Michael Rubinstein, David J. Fleet, William T. Freeman

NewsStories: Illustrating Articles with Visual Summaries
Reuben Tan, Bryan Plummer, Kate Saenko, J.P. Lewis, Avneesh Sud, Thomas Leung

Improving GANs for Long-Tailed Data Through Group Spectral Regularization
Harsh Rangwani, Naman Jaswani, Tejan Karmali, Varun Jampani, Venkatesh Babu Radhakrishnan

Planes vs. Chairs: Category-Guided 3D Shape Learning Without Any 3D Cues
Zixuan Huang, Stefan Stojanov, Anh Thai, Varun Jampani, James Rehg

A Sketch Is Worth a Thousand Words: Image Retrieval with Text and Sketch
Patsorn Sangkloy, Wittawat Jitkrittum, Diyi Yang, James Hays

Learned Monocular Depth Priors in Visual-Inertial Initialization
Yunwen Zhou, Abhishek Kar, Eric L. Turner, Adarsh Kowdle, Chao Guo, Ryan DuToit, Konstantine Tsotsos

How Stable are Transferability Metrics Evaluations?
Andrea Agostinelli, Michal Pandy, Jasper Uijlings, Thomas Mensink, Vittorio Ferrari

Data-Free Neural Architecture Search via Recursive Label Calibration
Zechun Liu*, Zhiqiang Shen, Yun Long, Eric Xing, Kwang-Ting Cheng, Chas H. Leichner

Fast and High Quality Image Denoising via Malleable Convolution
Yifan Jiang*, Bartlomiej Wronski, Ben Mildenhall, Jonathan T. Barron, Zhangyang Wang, Tianfan Xue

Concurrent Subsidiary Supervision for Unsupervised Source-Free Domain Adaptation
Jogendra Nath Kundu, Suvaansh Bhambri, Akshay R Kulkarni, Hiran Sarkar,
Varun Jampani, Venkatesh Babu Radhakrishnan

Learning Online Multi-Sensor Depth Fusion
Erik Sandström, Martin R. Oswald, Suryansh Kumar, Silvan Weder, Fisher Yu, Cristian Sminchisescu, Luc Van Gool

Hierarchical Semantic Regularization of Latent Spaces in StyleGANs
Tejan Karmali, Rishubh Parihar, Susmit Agrawal, Harsh Rangwani, Varun Jampani, Maneesh K Singh, Venkatesh Babu Radhakrishnan

RayTran: 3D Pose Estimation and Shape Reconstruction of Multiple Objects from Videos with Ray-Traced Transformers
Michał J Tyszkiewicz, Kevis-Kokitsi Maninis, Stefan Popov, Vittorio Ferrari

Neural Video Compression Using GANs for Detail Synthesis and Propagation
Fabian Mentzer, Eirikur Agustsson, Johannes Ballé, David Minnen, Nick Johnston, George Toderici

Exploring Fine-Grained Audiovisual Categorization with the SSW60 Dataset
Grant Van Horn, Rui Qian, Kimberly Wilber, Hartwig Adam, Oisin Mac Aodha, Serge Belongie

Implicit Neural Representations for Image Compression
Yannick Strümpler, Janis Postels, Ren Yang, Luc Van Gool, Federico Tombari

3D Compositional Zero-Shot Learning with DeCompositional Consensus
Muhammad Ferjad Naeem, Evin Pınar Örnek, Yongqin Xian, Luc Van Gool, Federico Tombari

FindIt: Generalized Localization with Natural Language Queries (see blog post)
Weicheng Kuo, Fred Bertsch, Wei Li, AJ Piergiovanni, Mohammad Saffar, Anelia Angelova

A Simple Single-Scale Vision Transformer for Object Detection and Instance Segmentation
Wuyang Chen*, Xianzhi Du, Fan Yang, Lucas Beyer, Xiaohua Zhai, Tsung-Yi Lin, Huizhong Chen, Jing Li, Xiaodan Song, Zhangyang Wang, Denny Zhou

Improved Masked Image Generation with Token-Critic
Jose Lezama, Huiwen Chang, Lu Jiang, Irfan Essa

Learning Discriminative Shrinkage Deep Networks for Image Deconvolution
Pin-Hung Kuo, Jinshan Pan, Shao-Yi Chien, Ming-Hsuan Yang

AudioScopeV2: Audio-Visual Attention Architectures for Calibrated Open-Domain On-Screen Sound Separation
Efthymios Tzinis*, Scott Wisdom, Tal Remez, John Hershey

Simple Open-Vocabulary Object Detection with Vision Transformers
Matthias Minderer, Alexey Gritsenko, Austin C Stone, Maxim Neumann, Dirk Weißenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, Neil Houlsby

COMPOSER: Compositional Reasoning of Group Activity in Videos with Keypoint-Only Modality
Honglu Zhou, Asim Kadav, Aviv Shamsian, Shijie Geng, Farley Lai, Long Zhao, Ting Liu, Mubbasir Kapadia, Hans Peter Graf

Video Question Answering with Iterative Video-Text Co-tokenization (see blog post)
AJ Piergiovanni, Kairo Morton*, Weicheng Kuo, Michael S. Ryoo, Anelia Angelova

Class-Agnostic Object Detection with Multi-modal Transformer
Muhammad Maaz, Hanoona Abdul Rasheed, Salman Khan, Fahad Shahbaz Khan, Rao Muhammad Anwer, Ming-Hsuan Yang

FILM: Frame Interpolation for Large Motion (see blog post)
Fitsum Reda, Janne Kontkanen, Eric Tabellion, Deqing Sun, Caroline Pantofaru, Brian Curless

Compositional Human-Scene Interaction Synthesis with Semantic Control
Kaifeng Zhao, Shaofei Wang, Yan Zhang, Thabo Beeler, Siyu Tang

Workshops

LatinX in AI
Mentors include: José Lezama
Keynote Speakers include: Andre Araujo

AI for Creative Video Editing and Understanding
Keynote Speakers include: Tali Dekel, Negar Rostamzadeh

Learning With Limited and Imperfect Data (L2ID)
Invited Speakers include: Xiuye Gu
Organizing Committee includes: Sadeep Jayasumana

International Challenge on Compositional and Multimodal Perception (CAMP)
Program Committee includes: Edward Vendrow

Self-Supervised Learning: What is Next?
Invited Speakers include: Mathilde Caron, Arsha Nagrani
Organizers include: Andrew Zisserman

3rd Workshop on Adversarial Robustness In the Real World
Invited Speakers include: Ekin Dogus Cubuk
Organizers include: Xinyun Chen, Alexander Robey, Nataniel Ruiz, Yutong Bai

AV4D: Visual Learning of Sounds in Spaces
Invited Speakers include: John Hershey

Challenge on Mobile Intelligent Photography and Imaging (MIPI)
Invited Speakers include: Peyman Milanfar

Robust Vision Challenge 2022
Organizing Committee includes: Alina Kuznetsova

Computer Vision in the Wild
Challenge Organizers include: Yi-Ting Chen, Ye Xia
Invited Speakers include: Yin Cui, Yongqin Xian, Neil Houlsby

Self-Supervised Learning for Next-Generation Industry-Level Autonomous Driving (SSLAD)
Organizers include: Fisher Yu

Responsible Computer Vision
Organizing Committee includes: Been Kim
Invited Speakers include: Emily Denton

Cross-Modal Human-Robot Interaction
Invited Speakers include: Peter Anderson

ISIC Skin Image Analysis
Organizing Committee includes: Yuan Liu
Steering Committee includes: Yuan Liu, Dale Webster
Invited Speakers include: Yuan Liu

Observing and Understanding Hands in Action
Sponsored by Google

Autonomous Vehicle Vision (AVVision)
Speakers include: Fisher Yu

Visual Perception for Navigation in Human Environments: The JackRabbot Human Body Pose Dataset and Benchmark
Organizers include: Edward Vendrow

Language for 3D Scenes
Invited Speakers include: Jason Baldridge
Organizers include: Leonidas Guibas

Designing and Evaluating Computer Perception Systems (CoPe)
Organizers include: Andrew Zisserman

Learning To Generate 3D Shapes and Scenes
Panelists include: Pete Florence

Advances in Image Manipulation
Program Committee includes: George Toderici, Ming-Hsuan Yang

TiE: Text in Everything
Challenge Organizers include: Shangbang Long, Siyang Qin
Invited Speakers include: Tali Dekel, Aishwarya Agrawal

Instance-Level Recognition
Organizing Committee: Andre Araujo, Bingyi Cao, Tobias Weyand
Invited Speakers include: Mathilde Caron

What Is Motion For?
Organizing Committee: Deqing Sun, Fitsum Reda, Charles Herrmann
Invited Speakers include: Tali Dekel

Neural Geometry and Rendering: Advances and the Common Objects in 3D Challenge
Invited Speakers include: Ben Mildenhall

Visual Object-Oriented Learning Meets Interaction: Discovery, Representations, and Applications
Invited Speakers include: Klaus Greff, Thomas Kipf
Organizing Committee includes: Leonidas Guibas

Vision with Biased or Scarce Data (VBSD)
Program Committee includes: Yizhou Wang

Multiple Object Tracking and Segmentation in Complex Environments
Invited Speakers include: Xingyi Zhou, Fisher Yu

3rd Visual Inductive Priors for Data-Efficient Deep Learning Workshop
Organizing Committee includes: Ekin Dogus Cubuk

DeeperAction: Detailed Video Action Understanding and Anomaly Recognition
Advisors include: Rahul Sukthankar

Sign Language Understanding Workshop and Sign Language Recognition, Translation & Production Challenge
Organizing Committee includes: Andrew Zisserman
Speakers include: Andrew Zisserman

Ego4D: First-Person Multi-Modal Video Understanding
Invited Speakers include: Michal Irani

AI-Enabled Medical Image Analysis: Digital Pathology & Radiology/COVID19
Program Chairs include: Po-Hsuan Cameron Chen
Workshop Partner: Google Health

Visual Object Tracking Challenge (VOT 2022)
Technical Committee includes: Christoph Mayer

Assistive Computer Vision and Robotics
Technical Committee includes: Maja Mataric

Human Body, Hands, and Activities from Egocentric and Multi-View Cameras
Organizers include: Francis Engelmann

Frontiers of Monocular 3D Perception: Implicit x Explicit
Panelists include: Pete Florence

Tutorials

Self-Supervised Representation Learning in Computer Vision
Invited Speakers include: Ting Chen

Neural Volumetric Rendering for Computer Vision
Organizers include: Ben Mildenhall, Pratul Srinivasan, Jon Barron
Presenters include: Ben Mildenhall, Pratul Srinivasan

New Frontiers in Efficient Neural Architecture Search!
Speakers include: Ruochen Wang



*Work done while at Google.  

Categories
Misc

Upcoming Webinar: A Deep Dive into MONAI

Join us on October 24 for a deep dive into MONAI, the essential framework for AI workflows in healthcare—including use cases, building blocks, and more.

Join us on October 24 for a deep dive into MONAI, the essential framework for AI workflows in healthcare—including use cases, building blocks, and more.

Categories
Offsites

PI-ARS: Accelerating Evolution-Learned Visual-Locomotion with Predictive Information Representations

Evolution strategy (ES) is a family of optimization techniques inspired by the ideas of natural selection: a population of candidate solutions are usually evolved over generations to better adapt to an optimization objective. ES has been applied to a variety of challenging decision making problems, such as legged locomotion, quadcopter control, and even power system control.

Compared to gradient-based reinforcement learning (RL) methods like proximal policy optimization (PPO) and soft actor-critic (SAC), ES has several advantages. First, ES directly explores in the space of controller parameters, while gradient-based methods often explore within a limited action space, which indirectly influences the controller parameters. More direct exploration has been shown to boost learning performance and enable large scale data collection with parallel computation. Second, a major challenge in RL is long-horizon credit assignment, e.g., when a robot accomplishes a task in the end, determining which actions it performed in the past were the most critical and should be assigned a greater reward. Since ES directly considers the total reward, it relieves researchers from needing to explicitly handle credit assignment. In addition, because ES does not rely on gradient information, it can naturally handle highly non-smooth objectives or controller architectures where gradient computation is non-trivial, such as meta–reinforcement learning. However, a major weakness of ES-based algorithms is their difficulty in scaling to problems that require high-dimensional sensory inputs to encode the environment dynamics, such as training robots with complex vision inputs.

In this work, we propose “PI-ARS: Accelerating Evolution-Learned Visual-Locomotion with Predictive Information Representations”, a learning algorithm that combines representation learning and ES to effectively solve high dimensional problems in a scalable way. The core idea is to leverage predictive information, a representation learning objective, to obtain a compact representation of the high-dimensional environment dynamics, and then apply Augmented Random Search (ARS), a popular ES algorithm, to transform the learned compact representation into robot actions. We tested PI-ARS on the challenging problem of visual-locomotion for legged robots. PI-ARS enables fast training of performant vision-based locomotion controllers that can traverse a variety of difficult environments. Furthermore, the controllers trained in simulated environments successfully transfer to a real quadruped robot.

PI-ARS trains reliable visual-locomotion policies that are transferable to the real world.

Predictive Information
A good representation for policy learning should be both compressive, so that ES can focus on solving a much lower dimensional problem than learning from raw observations would entail, and task-critical, so the learned controller has all the necessary information needed to learn the optimal behavior. For robotic control problems with high-dimensional input space, it is critical for the policy to understand the environment, including the dynamic information of both the robot itself and its surrounding objects.

As such, we propose an observation encoder that preserves information from the raw input observations that allows the policy to predict the future states of the environment, thus the name predictive information (PI). More specifically, we optimize the encoder such that the encoded version of what the robot has seen and planned in the past can accurately predict what the robot might see and be rewarded in the future. One mathematical tool to describe such a property is that of mutual information, which measures the amount of information we obtain about one random variable X by observing another random variable Y. In our case, X and Y would be what the robot saw and planned in the past, and what the robot sees and is rewarded in the future. Directly optimizing the mutual information objective is a challenging problem because we usually only have access to samples of the random variables, but not their underlying distributions. In this work we follow a previous approach that uses InfoNCE, a contrastive variational bound on mutual information to optimize the objective.

Left: We use representation learning to encode PI of the environment. Right: We train the representation by replaying trajectories from the replay buffer and maximize the predictability between the observation and motion plan in the past and the observation and reward in the future of the trajectory.

Predictive Information with Augmented Random Search
Next, we combine PI with Augmented Random Search (ARS), an algorithm that has shown excellent optimization performance for challenging decision-making tasks. At each iteration of ARS, it samples a population of perturbed controller parameters, evaluates their performance in the testing environment, and then computes a gradient that moves the controller towards the ones that performed better.

We use the learned compact representation from PI to connect PI and ARS, which we call PI-ARS. More specifically, ARS optimizes a controller that takes as input the learned compact representation PI and predicts appropriate robot commands to achieve the task. By optimizing a controller with smaller input space, it allows ARS to find the optimal solution more efficiently. Meanwhile, we use the data collected during ARS optimization to further improve the learned representation, which is then fed into the ARS controller in the next iteration.

An overview of the PI-ARS data flow. Our algorithm interleaves between two steps: 1) optimizing the PI objective that updates the policy, which is the weights for the neural network that extracts the learned representation; and 2) sampling new trajectories and updating the controller parameters using ARS.

Visual-Locomotion for Legged Robots
We evaluate PI-ARS on the problem of visual-locomotion for legged robots. We chose this problem for two reasons: visual-locomotion is a key bottleneck for legged robots to be applied in real-world applications, and the high-dimensional vision-input to the policy and the complex dynamics in legged robots make it an ideal test-case to demonstrate the effectiveness of the PI-ARS algorithm. A demonstration of our task setup in simulation can be seen below. Policies are first trained in simulated environments, and then transferred to hardware.

An illustration of the visual-locomotion task setup. The robot is equipped with two cameras to observe the environment (illustrated by the transparent pyramids). The observations and robot state are sent to the policy to generate a high-level motion plan, such as feet landing location and desired moving speed. The high-level motion plan is then achieved by a low-level Motion Predictive Control (MPC) controller.

Experiment Results
We first evaluate the PI-ARS algorithm on four challenging simulated tasks:

  • Uneven stepping stones: The robot needs to walk over uneven terrain while avoiding gaps.
  • Quincuncial piles: The robot needs to avoid gaps both in front and sideways.
  • Moving platforms: The robot needs to walk over stepping stones that are randomly moving horizontally or vertically. This task illustrates the flexibility of learning a vision-based policy in comparison to explicitly reconstructing the environment.
  • Indoor navigation: The robot needs to navigate to a random location while avoiding obstacles in an indoor environment.

As shown below, PI-ARS is able to significantly outperform ARS in all four tasks in terms of the total task reward it can obtain (by 30-50%).

Left: Visualization of PI-ARS policy performance in simulation. Right: Total task reward (i.e., episode return) for PI-ARS (green line) and ARS (red line). The PI-ARS algorithm significantly outperforms ARS on four challenging visual-locomotion tasks.

We further deploy the trained policies to a real Laikago robot on two tasks: random stepping stone and indoor navigation. We demonstrate that our trained policies can successfully handle real-world tasks. Notably, the success rate of the random stepping stone task improved from 40% in the prior work to 100%.

PI-ARS trained policy enables a real Laikago robot to navigate around obstacles.

Conclusion
In this work, we present a new learning algorithm, PI-ARS, that combines gradient-based representation learning with gradient-free evolutionary strategy algorithms to leverage the advantages of both. PI-ARS enjoys the effectiveness, simplicity, and parallelizability of gradient-free algorithms, while relieving a key bottleneck of ES algorithms on handling high-dimensional problems by optimizing a low-dimensional representation. We apply PI-ARS to a set of challenging visual-locomotion tasks, among which PI-ARS significantly outperforms the state of the art. Furthermore, we validate the policy learned by PI-ARS on a real quadruped robot. It enables the robot to walk over randomly-placed stepping stones and navigate in an indoor space with obstacles. Our method opens the possibility of incorporating modern large neural network models and large-scale data into the field of evolutionary strategy for robotics control.

Acknowledgements
We would like to thank our paper co-authors: Ofir Nachum, Tingnan Zhang, Sergio Guadarrama, and Jie Tan. We would also like to thank Ian Fischer and John Canny for valuable feedback.