Hi, i am just starting with Tensorflow for my AI and i ran into an error i don’t know how to solve
[2021-09-06 21:55:50.461476: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX AVX2
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2021-09-06 21:55:51.050032: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1510] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 2781 MB memory: -> device: 0, name: NVIDIA GeForce GTX 970, pci bus id: 0000:01:00.0, compute capability: 5.2
C:UsersGamerAppDataLocalProgramsPythonPython39libsite-packageskerasoptimizer_v2optimizer_v2.py:355: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.
warnings.warn(
2021-09-06 21:55:51.508673: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:185] None of the MLIR Optimization Passes are enabled (registered 2)
Epoch 1/200
Traceback (most recent call last):
File “C:UsersGamereclipse-workspaceAItraining_jarvis.py”, line 69, in <module>
model.fit(np.array(training_1), np.array(training_2), epochs=200, batch_size=5, verbose=2)
File “C:UsersGamerAppDataLocalProgramsPythonPython39libsite-packageskerasenginetraining.py“, line 1184, in fit
tmp_logs = self.train_function(iterator)
File “C:UsersGamerAppDataLocalProgramsPythonPython39libsite-packagestensorflowpythoneagerdef_function.py”, line 885, in __call__
result = self._call(*args, **kwds)
File “C:UsersGamerAppDataLocalProgramsPythonPython39libsite-packagestensorflowpythoneagerdef_function.py”, line 933, in _call
self._initialize(args, kwds, add_initializers_to=initializers)
File “C:UsersGamerAppDataLocalProgramsPythonPython39libsite-packagestensorflowpythoneagerdef_function.py”, line 759, in _initialize
self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access
File “C:UsersGamerAppDataLocalProgramsPythonPython39libsite-packagestensorflowpythoneagerfunction.py“, line 3066, in _get_concrete_function_internal_garbage_collected
graph_function, _ = self._maybe_define_function(args, kwargs)
File “C:UsersGamerAppDataLocalProgramsPythonPython39libsite-packagestensorflowpythoneagerfunction.py“, line 3463, in _maybe_define_function
graph_function = self._create_graph_function(args, kwargs)
File “C:UsersGamerAppDataLocalProgramsPythonPython39libsite-packagestensorflowpythoneagerfunction.py“, line 3298, in _create_graph_function
func_graph_module.func_graph_from_py_func(
File “C:UsersGamerAppDataLocalProgramsPythonPython39libsite-packagestensorflowpythonframeworkfunc_graph.py”, line 1007, in func_graph_from_py_func
func_outputs = python_func(*func_args, **func_kwargs)
File “C:UsersGamerAppDataLocalProgramsPythonPython39libsite-packagestensorflowpythoneagerdef_function.py”, line 668, in wrapped_fn
out = weak_wrapped_fn().__wrapped__(*args, **kwds)
File “C:UsersGamerAppDataLocalProgramsPythonPython39libsite-packagestensorflowpythonframeworkfunc_graph.py”, line 994, in wrapper
raise e.ag_error_metadata.to_exception(e)
TypeError: in user code:
C:UsersGamerAppDataLocalProgramsPythonPython39libsite-packageskerasenginetraining.py:853 train_function *
return step_function(self, iterator)
C:UsersGamerAppDataLocalProgramsPythonPython39libsite-packageskerasenginetraining.py:842 step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
C:UsersGamerAppDataLocalProgramsPythonPython39libsite-packagestensorflowpythondistributedistribute_lib.py:1286 run
return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
C:UsersGamerAppDataLocalProgramsPythonPython39libsite-packagestensorflowpythondistributedistribute_lib.py:2849 call_for_each_replica
return self._call_for_each_replica(fn, args, kwargs)
C:UsersGamerAppDataLocalProgramsPythonPython39libsite-packagestensorflowpythondistributedistribute_lib.py:3632 _call_for_each_replica
return fn(*args, **kwargs)
C:UsersGamerAppDataLocalProgramsPythonPython39libsite-packageskerasenginetraining.py:835 run_step **
outputs = model.train_step(data)
C:UsersGamerAppDataLocalProgramsPythonPython39libsite-packageskerasenginetraining.py:787 train_step
y_pred = self(x, training=True)
C:UsersGamerAppDataLocalProgramsPythonPython39libsite-packageskerasenginebase_layer.py:1037 __call__
outputs = call_fn(inputs, *args, **kwargs)
C:UsersGamerAppDataLocalProgramsPythonPython39libsite-packageskerasenginesequential.py:369 call
return super(Sequential, self).call(inputs, training=training, mask=mask)
C:UsersGamerAppDataLocalProgramsPythonPython39libsite-packageskerasenginefunctional.py:414 call
return self._run_internal_graph(
C:UsersGamerAppDataLocalProgramsPythonPython39libsite-packageskerasenginefunctional.py:550 _run_internal_graph
outputs = node.layer(*args, **kwargs)
C:UsersGamerAppDataLocalProgramsPythonPython39libsite-packageskerasenginebase_layer.py:1037 __call__
outputs = call_fn(inputs, *args, **kwargs)
C:UsersGamerAppDataLocalProgramsPythonPython39libsite-packageskeraslayerscore.py:212 call
output = control_flow_util.smart_cond(training, dropped_inputs,
C:UsersGamerAppDataLocalProgramsPythonPython39libsite-packageskerasutilscontrol_flow_util.py:105 smart_cond
return tf.__internal__.smart_cond.smart_cond(
C:UsersGamerAppDataLocalProgramsPythonPython39libsite-packagestensorflowpythonframeworksmart_cond.py:56 smart_cond
return true_fn()
C:UsersGamerAppDataLocalProgramsPythonPython39libsite-packageskeraslayerscore.py:208 dropped_inputs
noise_shape=self._get_noise_shape(inputs),
C:UsersGamerAppDataLocalProgramsPythonPython39libsite-packageskeraslayerscore.py:197 _get_noise_shape
for i, value in enumerate(self.noise_shape):
TypeError: ‘int’ object is not iterable]
I guess it’s about the model.fit line but i am not sure, for reference here is a bit of my code:
[training_1 = list(training_ai[:,0])
training_2 = list(training_ai[:,1])
model = Sequential()
model.add(Dense(128, input_shape=(len(training_1[0]),),activation=’relu’))
model.add(Dropout(0,5))
model.add(Dense(64, activation = ‘relu’))
model.add(Dropout(0,5))
model.add(Dense(len(training_2[0]),activation=’softmax’))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss=’categorical_crossenropy’, optimizer=sgd, metrics=[‘accuracy’])
model.fit(np.array(training_1), np.array(training_2), epochs=200, batch_size=5, verbose=2)]
I would be happy if you could help me with this Error